OFFSET
1,5
COMMENTS
The Copeland link gives the associations of this entry with the operator calculus of Appell Sheffer polynomials, the combinatorics of simple set partitions encoded in the Faa di Bruno formula for composition of analytic functions (formal Taylor series), the Pascal matrix, and the geometry of the n-dimensional simplices (hypertriangles, or hypertetrahedra). These, in turn, are related to simple instances of the application of the exponential formula / principle / schema giving the number of not-necessarily-connected objects composed from an ensemble of connected objects. - Tom Copeland, Jun 09 2021
LINKS
Seiichi Manyama, Antidiagonals n = 1..50, flattened (first 20 antidiagonals from Harry J. Smith)
Tom Copeland, Calculus, Combinatorics, and Geometry Underlying OEIS A060540, and the Exponential Formula, 2021.
Nattawut Phetmak and Jittat Fakcharoenphol, Uniformly Generating Derangements with Fixed Number of Cycles in Polynomial Time, Thai J. Math. (2023) Vol. 21, No. 4, 899-915. See pp. 901, 914.
FORMULA
T(n,k) = Product_{j=2..n} binomial(j*k-1,k-1). - M. F. Hasler, Aug 22 2014
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 10, 35, 126, 462, ...
1, 15, 280, 5775, 126126, 2858856, ...
1, 105, 15400, 2627625, 488864376, 96197645544, ...
1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, ...
...
MATHEMATICA
T[n_, k_] := (n*k)!/(k!^n*n!);
Table[T[n-k+1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 29 2018 *)
PROG
(PARI) { i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060540.txt", i++, " ", (n*k)!/(k!^n*n!))); ) } \\ Harry J. Smith, Jul 06 2009
CROSSREFS
KEYWORD
AUTHOR
Henry Bottomley, Apr 02 2001
EXTENSIONS
Definition reworded by M. F. Hasler, Aug 23 2014
STATUS
approved