[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a052571 -id:a052571
Displaying 1-6 of 6 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A005990 a(n) = (n-1)*(n+1)!/6.
(Formerly M4551)
+10
21
0, 1, 8, 60, 480, 4200, 40320, 423360, 4838400, 59875200, 798336000, 11416204800, 174356582400, 2833294464000, 48819843072000, 889218570240000, 17072996548608000, 344661117825024000, 7298706024529920000, 161787983543746560000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Coefficients of Gandhi polynomials.
a(n) = Sum_{pi in Symm(n)} Sum_{i=1..n} max(pi(i)-i,0), i.e., the total positive displacement of all letters in all permutations on n letters. - Franklin T. Adams-Watters, Oct 25 2006
a(n) is also the sum of the excedances of all permutations of [n]. An excedance of a permutation p of [n] is an i (1 <= i <= n-1) such that p(i) > i. Proof: i is an excedance if p(i) = i+1, i+2, ..., n (n-i possibilities), with the remaining values of p forming any permutation of [n]\{p(i)} in the positions [n]\{i} ((n-1)! possibilities). Summation of i(n-i)(n-1)! over i from 1 to n-1 completes the proof. Example: a(3)=8 because the permutations 123, 132, 213, 231, 312, 321 have excedances NONE, {2}, {1}, {1,2}, {1}, {1}, respectively. - Emeric Deutsch, Oct 26 2008
a(n) is also the number of doubledescents in all permutations of {1,2,...,n-1}. We say that i is a doubledescent of a permutation p if p(i) > p(i+1) > p(i+2). Example: a(3)=8 because each of the permutations 1432, 4312, 4213, 2431, 3214, 3421 has one doubledescent, the permutation 4321 has two doubledescents and the remaining 17 permutations of {1,2,3,4} have no doubledescents. - Emeric Deutsch, Jul 26 2009
Equals the second right hand column of A167568 divided by 2. - Johannes W. Meijer, Nov 12 2009
Half of sum of abs(p(i+1) - p(i)) over all permutations on n, e.g., 42531 = 2 + 3 + 2 + 2 = 9, and the total over all permutations on {1,2,3,4,5} is 960. - Jon Perry, May 24 2013
a(n) gives the number of non-occupied corners in tree-like tableaux of size n+1 (see Gao et al. link). - Michel Marcus, Nov 18 2015
a(n) is the number of sequences of n+2 balls colored with at most n colors such that exactly three balls are the same color as some other ball in the sequence. - Jeremy Dover, Sep 26 2017
a(n) is the number of triangles (3-cycles) in the (n+1)-alternating group graph. - Eric W. Weisstein, Jun 09 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Dumont, Interpretations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
Alice L. L. Gao, Emily X. L. Gao, and Brian Y. Sun, Zubieta's Conjecture on the Enumeration of Corners in Tree-like Tableaux, arXiv:1511.05434 [math.CO], 2015. The second version of this paper has a different title and different authors: A. L. L. Gao, E. X. L. Gao, P. Laborde-Zubieta, and B. Y. Sun, Enumeration of Corners in Tree-like Tableaux and a Conjectural (a,b)-analogue, arXiv preprint arXiv:1511.05434v2, 2015.
Eric Weisstein's World of Mathematics, Alternating Group Graph.
Eric Weisstein's World of Mathematics, Graph Cycle.
FORMULA
a(n) = A090672(n)/2.
a(n) = A052571(n+2)/6. - Zerinvary Lajos, May 11 2007
a(n) = Sum_{m=0..n} Sum_{k=-1..n} Sum_{j=1..n} n!/6, n >= 0. - Zerinvary Lajos, May 11 2007
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j)) then a(n+1) = (-1)^(n-1)*f(n,1,-4), (n >= 1). - Milan Janjic, Mar 01 2009
E.g.f.: (-1+3*x)/(3!*(1-x)^3), a(0) = -1/3!. Such e.g.f. computations resulted from e-mail exchange with Gary Detlefs. - Wolfdieter Lang, May 27 2010
a(n) = ((n+3)!/2) * Sum_{j=i..k} (k+1)!/(k+3)!, with offset 0. - Gary Detlefs, Aug 05 2010
a(n) = (n+2)!*Sum_{k=1..n-1} 1/((2*k+4)*(k+3)). - Gary Detlefs, Oct 09 2011
a(n) = (n+2)!*(1 + 3*(H(n+1) - H(n+2)))/6, where H(n) is the n-th harmonic number. - Gary Detlefs, Oct 09 2011
With offset = 0, e.g.f.: x/(1-x)^4. - Geoffrey Critzer, Aug 30 2013
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 3*(Ei(1) - gamma) - 6*e + 27/2, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=2} (-1)^n/a(n) = 3*(gamma - Ei(-1)) - 3/2, where Ei(-1) = -A099285. (End)
MAPLE
[ seq((n-1)*(n+1)!/6, n=1..40) ];
a:=n->sum(sum(sum(n!/6, j=1..n), k=-1..n), m=0..n): seq(a(n), n=0..19); # Zerinvary Lajos, May 11 2007
seq(sum(mul(j, j=3..n), k=3..n)/3, n=2..21); # Zerinvary Lajos, Jun 01 2007
restart: G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n]/3!, n=2..21); # Zerinvary Lajos, Apr 01 2009
MATHEMATICA
Table[Sum[n!/6, {i, 3, n}], {n, 2, 21}] (* Zerinvary Lajos, Jul 12 2009 *)
Table[(n - 1) (n + 1)!/6, {n, 20}] (* Harvey P. Dale, Apr 07 2019 *)
Table[(n - 1) Pochhammer[4, n - 2], {n, 20}] (* Eric W. Weisstein, Jun 09 2019 *)
Table[(n - 1) Gamma[n + 2]/6, {n, 20}] (* Eric W. Weisstein, Jun 09 2019 *)
Range[0, 20]! CoefficientList[Series[x/(1 - x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Jun 09 2019 *)
PROG
(Magma) [(n-1)*Factorial(n+1)/6: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
(PARI) a(n)=(n-1)*(n+1)!/6 \\ Charles R Greathouse IV, May 24 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better definition from Robert Newstedt
STATUS
approved
A257503 Square array A(row,col) read by antidiagonals: A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)); Dispersion of factorial base shift A255411 (array transposed). +10
16
1, 2, 4, 3, 12, 18, 5, 16, 72, 96, 6, 22, 90, 480, 600, 7, 48, 114, 576, 3600, 4320, 8, 52, 360, 696, 4200, 30240, 35280, 9, 60, 378, 2880, 4920, 34560, 282240, 322560, 10, 64, 432, 2976, 25200, 39600, 317520, 2903040, 3265920, 11, 66, 450, 3360, 25800, 241920, 357840, 3225600, 32659200, 36288000, 13, 70, 456, 3456, 28800, 246240, 2540160, 3588480, 35925120, 399168000, 439084800 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The first row (A256450) contains all the numbers which have at least one 1-digit in their factorial base representation (see A007623), after which the successive rows are obtained from the terms on the row immediately above by shifting their factorial representation one left and then incrementing the nonzero digits in that representation with a factorial base shift-operation A255411.
LINKS
FORMULA
A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)).
EXAMPLE
The top left corner of the array:
1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13
4, 12, 16, 22, 48, 52, 60, 64, 66, 70, 76
18, 72, 90, 114, 360, 378, 432, 450, 456, 474, 498
96, 480, 576, 696, 2880, 2976, 3360, 3456, 3480, 3576, 3696
600, 3600, 4200, 4920, 25200, 25800, 28800, 29400, 29520, 30120, 30840
4320, 30240, 34560, 39600, 241920, 246240, 272160, 276480, 277200, 281520, 286560
...
PROG
(Scheme)
(define (A257503 n) (A257503bi (A002260 n) (A004736 n)))
(define (A257503bi row col) (if (= 1 row) (A256450 (- col 1)) (A255411 (A257503bi (- row 1) col))))
CROSSREFS
Transpose: A257505.
Inverse permutation: A257504.
Row index: A257679, Column index: A257681.
Row 1: A256450, Row 2: A257692, Row 3: A257693.
Columns 1-3: A001563, A062119, A130744 (without their initial zero-terms).
Column 4: A213167 (without the initial one).
Column 5: A052571 (without initial zeros).
Cf. also permutations A255565 and A255566.
Thematically similar arrays: A083412, A135764, A246278.
KEYWORD
nonn,base,tabl
AUTHOR
Antti Karttunen, Apr 27 2015
EXTENSIONS
Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016
STATUS
approved
A257505 Square array A(row,col): A(row,1) = A256450(row-1), and for col > 1, A(row,col) = A255411(A(row,col-1)); Dispersion of factorial base shift A255411. +10
15
1, 4, 2, 18, 12, 3, 96, 72, 16, 5, 600, 480, 90, 22, 6, 4320, 3600, 576, 114, 48, 7, 35280, 30240, 4200, 696, 360, 52, 8, 322560, 282240, 34560, 4920, 2880, 378, 60, 9, 3265920, 2903040, 317520, 39600, 25200, 2976, 432, 64, 10, 36288000, 32659200, 3225600, 357840, 241920, 25800, 3360, 450, 66, 11, 439084800, 399168000, 35925120, 3588480, 2540160, 246240, 28800, 3456, 456, 70, 13 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The array is read by downward antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
In Kimberling's terminology, this array is called the dispersion of sequence A255411 (when started from its first nonzero term, 4). The left column is the complement of that sequence, which is A256450.
LINKS
Clark Kimberling, Interspersions and Dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
FORMULA
A(row,1) = A256450(row-1), and for col > 1, A(row,col) = A255411(A(row,col-1)).
EXAMPLE
The top left corner of the array:
1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920
2, 12, 72, 480, 3600, 30240, 282240, 2903040, 32659200
3, 16, 90, 576, 4200, 34560, 317520, 3225600, 35925120
5, 22, 114, 696, 4920, 39600, 357840, 3588480, 39553920
6, 48, 360, 2880, 25200, 241920, 2540160, 29030400, 359251200
7, 52, 378, 2976, 25800, 246240, 2575440, 29352960, 362517120
8, 60, 432, 3360, 28800, 272160, 2822400, 31933440, 391910400
9, 64, 450, 3456, 29400, 276480, 2857680, 32256000, 395176320
10, 66, 456, 3480, 29520, 277200, 2862720, 32296320, 395539200
11, 70, 474, 3576, 30120, 281520, 2898000, 32618880, 398805120
13, 76, 498, 3696, 30840, 286560, 2938320, 32981760, 402433920
14, 84, 552, 4080, 33840, 312480, 3185280, 35562240, 431827200
15, 88, 570, 4176, 34440, 316800, 3220560, 35884800, 435093120
17, 94, 594, 4296, 35160, 321840, 3260880, 36247680, 438721920
19, 100, 618, 4416, 35880, 326880, 3301200, 36610560, 442350720
20, 108, 672, 4800, 38880, 352800, 3548160, 39191040, 471744000
21, 112, 690, 4896, 39480, 357120, 3583440, 39513600, 475009920
23, 118, 714, 5016, 40200, 362160, 3623760, 39876480, 478638720
...
PROG
(Scheme)
(define (A257505 n) (A257505bi (A002260 n) (A004736 n)))
(define (A257505bi row col) (if (= 1 col) (A256450 (- row 1)) (A255411 (A257505bi row (- col 1)))))
CROSSREFS
Transpose: A257503.
Inverse permutation: A257506.
Row index: A257681, Column index: A257679.
Columns 1-3: A256450, A257692, A257693.
Rows 1-3: A001563, A062119, A130744 (without their initial zero-terms).
Row 4: A213167 (without the initial one).
Row 5: A052571 (without initial zeros).
Cf. also permutations A255565, A255566.
Thematically similar arrays: A035513, A054582, A246279.
KEYWORD
nonn,base,tabl
AUTHOR
Antti Karttunen, Apr 27 2015
EXTENSIONS
Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016
STATUS
approved
A282466 a(n) = n*a(n-1) + n!, with n>0, a(0)=5. +10
9
5, 6, 14, 48, 216, 1200, 7920, 60480, 524160, 5080320, 54432000, 638668800, 8143027200, 112086374400, 1656387532800, 26153487360000, 439378587648000, 7825123418112000, 147254595231744000, 2919482409811968000, 60822550204416000000, 1328364496464445440000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
REFERENCES
C. Mariconda and A. Tonolo, Calcolo discreto, Apogeo (2012), page 240 (Example 9.57 gives the recurrence).
LINKS
FORMULA
E.g.f.: (5 - 4*x)/(1 - x)^2.
a(n) = (n + 5)*n!.
a(n) = 2*A229039(n) for n>0.
From Amiram Eldar, Nov 06 2020: (Start)
Sum_{n>=0} 1/a(n) = 9*e - 24.
Sum_{n>=0} (-1)^n/a(n) = 24 - 65/e. (End)
MATHEMATICA
RecurrenceTable[{a[0] == 5, a[n] == n a[n - 1] + n!}, a, {n, 0, 30}] (* or *)
Table[(n + 5) n!, {n, 0, 30}]
CROSSREFS
Cf. A229039.
Cf. sequences with formula (n + k)*n!: A052521 (k=-5), A282822 (k=-4), A052520 (k=-3), A052571 (k=-2), A062119 (k=-1), A001563 (k=0), A000142 (k=1), A001048 (k=2), A052572 (k=3), A052644 (k=4), this sequence (k=5).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Feb 22 2017
STATUS
approved
A090672 a(n) = (n^2-1)*n!/3. +10
7
0, 2, 16, 120, 960, 8400, 80640, 846720, 9676800, 119750400, 1596672000, 22832409600, 348713164800, 5666588928000, 97639686144000, 1778437140480000, 34145993097216000, 689322235650048000, 14597412049059840000, 323575967087493120000, 7493338185184051200000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n) = Sum_{pi in Symm(n)} Sum_{i=1..n} |pi(i)-i|, i.e., the total displacement of all letters in all permutations on n letters.
a(n) = number of entries between the entries 1 and 2 in all permutations of {1,2,...,n+1}. Example: a(2)=2 because we have 123, 1(3)2, 213, 2(3)1, 312, 321; the entries between 1 and 2 are surrounded by parentheses. - Emeric Deutsch, Apr 06 2008
a(n) = Sum_{k=0..n-1} k*A138770(n+1,k). - Emeric Deutsch, Apr 06 2008
a(n) is also the number of peaks in all permutations of {1,2,...,n+1}. Example: a(3)=16 because the permutations 1234, 4123, 3124, 4312, 2134, 4213, 3214, and 4321 have no peaks and each of the remaining 16 permutations of {1,2,3,4} has exactly one peak. - Emeric Deutsch, Jul 26 2009
a(n), for n>=2, is the number of (n+2)-node tournaments that have exactly one triad. Proven by Kadane (1966), see link. - Ian R Harris, Sep 26 2022
REFERENCES
D. Daly and P. Vojtechovsky, Displacement of permutations, preprint, 2003.
LINKS
J. B. Kadane, Some equivalence classes in paired comparisons, The Annals of Mathematical Statistics, 37 (1966), 488-494.
FORMULA
a(n) = A052571(n+2)/3 = 2*A005990(n). - Zerinvary Lajos, May 11 2007
a(n) = (n+3)! * Sum_{k=1..n} (k+1)!/(k+3)!, with offset 0. - Gary Detlefs, Aug 05 2010
E.g.f.: (x^3 - 3*x^2)/(3*(x-1)^3). - Geoffrey Critzer, Mar 04 2013
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=2} 1/a(n) = (3/2)*(Ei(1) - gamma) - 3*e + 27/4, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=2} (-1)^n/a(n) = (3/2)*(gamma - Ei(-1)) - 3/4, where Ei(-1) = -A099285. (End)
MATHEMATICA
nn=20; Drop[Range[0, nn]!CoefficientList[Series[ x^3/3/(1-x)^2, {x, 0, nn}], x], 2] (* Geoffrey Critzer, Mar 04 2013 *)
PROG
(Magma) [(n^2-1)*Factorial(n)/3: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
CROSSREFS
Twice A005990.
Cf. A138770.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 18 2003
STATUS
approved
A324225 Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows. +10
3
1, 1, 2, 1, 2, 4, 6, 4, 2, 6, 12, 18, 24, 18, 12, 6, 24, 48, 72, 96, 120, 96, 72, 48, 24, 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120, 720, 1440, 2160, 2880, 3600, 4320, 5040, 4320, 3600, 2880, 2160, 1440, 720, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 35280, 30240, 25200, 20160, 15120, 10080, 5040 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
T(n,k) is the number of occurrences of k in all (signed) displacement lists [p(i)-i, i=1..n] of permutations p of [n].
LINKS
Nadir Samos Sáenz de Buruaga, Rafał Bistroń, Marcin Rudziński, Rodrigo Miguel Chinita Pereira, Karol Życzkowski, and Pedro Ribeiro, Fidelity decay and error accumulation in quantum volume circuits, arXiv:2404.11444 [quant-ph], 2024. See p. 18.
Wikipedia, Permutation
FORMULA
T(n,k) = T(n,-k).
T(n,k) = (n-t)*(n-1)! if t < n with t = |k|, T(n,k) = 0 otherwise.
T(n,k) = |k|! * A324224(n,k).
E.g.f. of column k: x^t/t * hypergeom([2, t], [t+1], x) with t = |k|+1.
|T(n,k)-T(n,k-1)| = (n-1)! for k = 1-n..n.
Sum_{k=0..n-1} T(n,k) = A001710(n+1).
EXAMPLE
The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement lists [p(i)-i, i=1..3]: [0,0,0], [0,1,-1], [1,-1,0], [1,1,-2], [2,-1,-1], [2,0,-2], representing the indices of falling diagonals of 1's in the permutation matrices
[1 ] [1 ] [ 1 ] [ 1 ] [ 1] [ 1]
[ 1 ] [ 1] [1 ] [ 1] [1 ] [ 1 ]
[ 1] [ 1 ] [ 1] [1 ] [ 1 ] [1 ] , respectively. Indices -2 and 2 occur twice, -1 and 1 occur four times, and 0 occurs six times. So row n=3 is [2, 4, 6, 4, 2].
Triangle T(n,k) begins:
: 1 ;
: 1, 2, 1 ;
: 2, 4, 6, 4, 2 ;
: 6, 12, 18, 24, 18, 12, 6 ;
: 24, 48, 72, 96, 120, 96, 72, 48, 24 ;
: 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120 ;
MAPLE
b:= proc(s, c) option remember; (n-> `if`(n=0, c,
add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, 0)):
seq(T(n), n=1..8);
# second Maple program:
egf:= k-> (t-> x^t/t*hypergeom([2, t], [t+1], x))(abs(k)+1):
T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1-n..n-1), n=1..8);
# third Maple program:
T:= (n, k)-> (t-> `if`(t<n, (n-t)*(n-1)!, 0))(abs(k)):
seq(seq(T(n, k), k=1-n..n-1), n=1..8);
MATHEMATICA
T[n_, k_] := With[{t = Abs[k]}, If[t<n, (n-t)(n-1)!, 0]];
Table[Table[T[n, k], {k, 1-n, n-1}], {n, 1, 8}] // Flatten (* Jean-François Alcover, Mar 25 2021, after 3rd Maple program *)
CROSSREFS
Columns k=0-6 give (offsets may differ): A000142, A001563, A062119, A052571, A052520, A282822, A052521.
Row sums give A001563.
T(n+1,n) gives A000142.
T(n+1,n-1) gives A052849.
T(n+1,n-2) gives A052560 for n>1.
Cf. A152883 (right half of this triangle without center column), A162608 (left half of this triangle), A306461, A324224.
Cf. A001710.
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Feb 18 2019
STATUS
approved
page 1

Search completed in 0.008 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 1 06:23 EDT 2024. Contains 375575 sequences. (Running on oeis4.)