OFFSET
0,2
COMMENTS
For n >= 1 a(n) is the size of the centralizer of a transposition in the symmetric group S_(n+1). - Ahmed Fares (ahmedfares(AT)my-deja.com), May 12 2001
For n > 0, a(n) = n! - A062119(n-1) = number of permutations of length n that have two specified elements adjacent. For example, a(4) = 12 as of the 24 permutations, 12 have say 1 and 2 adjacent: 1234, 2134, 1243, 2143, 3124, 3214, 4123, 4213, 3412, 3421, 4312, 4321. - Jon Perry, Jun 08 2003
With different offset, denominators of certain sums computed by Ramanujan.
From Michael Somos, Mar 04 2004: (Start)
Stirling transform of a(n) = [2, 4, 12, 48, 240, ...] is A000629(n) = [2, 6, 26, 150, 1082, ...].
Stirling transform of a(n-1) = [1, 2, 4, 12, 48, ...] is A007047(n-1) = [1, 3, 11, 51, 299, ...].
Stirling transform of a(n) = [1, 4, 12, 48, 240, ...] is A002050(n) = [1, 5, 25, 149, 1081, ...].
Stirling transform of 2*A006252(n) = [2, 2, 4, 8, 28, ...] is a(n) = [2, 4, 12, 48, 240, ...].
Stirling transform of a(n+1) = [4, 12, 48, 240, ...] is 2*A005649(n) = [4, 16, 88, 616, ...].
Stirling transform of a(n+1) = [4, 12, 48, 240, ...] is 4*A083410(n) = [4, 16, 88, 616, ...]. (End)
Number of {12, 12*, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
Permanent of the (0, 1)-matrices with (i, j)-th entry equal to 0 if and only if it is in the border but not the corners. The border of a matrix is defined the be the first and the last row, together with the first and the last column. The corners of a matrix are the entries (i = 1, j = 1), (i = 1, j = n), (i = n, j = 1) and (i = n, j = n). - Simone Severini, Oct 17 2004
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 520.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..400
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 490.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 817.
Anna Khmelnitskaya, Gerard van der Laan, and Dolf Talmanm, The Number of Ways to Construct a Connected Graph: A Graph-Based Generalization of the Binomial Coefficients, J. Int. Seq. (2023) Art. 23.4.3. See p. 11.
T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
FORMULA
a(n) = T(n, 2) for n>1, where T is defined as in A080046.
D-finite with recurrence: {a(0) = 0, a(1) = 2, (-1 - n)*a(n+1) + a(n+2)=0}.
E.g.f.: 2*x/(1-x).
a(n) = A090802(n, n - 1) for n > 0. - Ross La Haye, Sep 26 2005
For n >= 1, a(n) = (n+3)!*Sum_{k=0..n+2} (-1)^k*binomial(2, k)/(n + 3 - k). - Milan Janjic, Dec 14 2008
G.f.: 2/Q(0) - 2, where Q(k) = 1 - x*(k + 1)/(1 - x*(k + 1)/Q(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Apr 01 2013
G.f.: -2 + 2/Q(0), where Q(k) = 1 + k*x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
G.f.: W(0) - 2 , where W(k) = 1 + 1/( 1 - x*(k+1)/( x*(k+1) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 21 2013
a(n) = A245334(n, n-1), n > 0. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=1} 1/a(n) = (e-1)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (e-1)/(2*e). (End)
MAPLE
spec := [S, {B=Cycle(Z), C=Cycle(Z), S=Union(B, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Join[{0}, 2Range[20]!] (* Harvey P. Dale, Jul 13 2013 *)
PROG
(PARI) a(n)=if(n<1, 0, n!*2)
(Haskell)
a052849 n = if n == 0 then 0 else 2 * a000142 n
a052849_list = 0 : fs where fs = 2 : zipWith (*) [2..] fs
-- Reinhard Zumkeller, Aug 31 2014
(Magma) [0] cat [2*Factorial(n-1): n in [2..25]]; // Vincenzo Librandi, Nov 03 2014
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Ross La Haye, Sep 26 2005
STATUS
approved