OFFSET
1,3
COMMENTS
Coefficients of Gandhi polynomials.
a(n) = Sum_{pi in Symm(n)} Sum_{i=1..n} max(pi(i)-i,0), i.e., the total positive displacement of all letters in all permutations on n letters. - Franklin T. Adams-Watters, Oct 25 2006
a(n) is also the sum of the excedances of all permutations of [n]. An excedance of a permutation p of [n] is an i (1 <= i <= n-1) such that p(i) > i. Proof: i is an excedance if p(i) = i+1, i+2, ..., n (n-i possibilities), with the remaining values of p forming any permutation of [n]\{p(i)} in the positions [n]\{i} ((n-1)! possibilities). Summation of i(n-i)(n-1)! over i from 1 to n-1 completes the proof. Example: a(3)=8 because the permutations 123, 132, 213, 231, 312, 321 have excedances NONE, {2}, {1}, {1,2}, {1}, {1}, respectively. - Emeric Deutsch, Oct 26 2008
a(n) is also the number of doubledescents in all permutations of {1,2,...,n-1}. We say that i is a doubledescent of a permutation p if p(i) > p(i+1) > p(i+2). Example: a(3)=8 because each of the permutations 1432, 4312, 4213, 2431, 3214, 3421 has one doubledescent, the permutation 4321 has two doubledescents and the remaining 17 permutations of {1,2,3,4} have no doubledescents. - Emeric Deutsch, Jul 26 2009
Equals the second right hand column of A167568 divided by 2. - Johannes W. Meijer, Nov 12 2009
Half of sum of abs(p(i+1) - p(i)) over all permutations on n, e.g., 42531 = 2 + 3 + 2 + 2 = 9, and the total over all permutations on {1,2,3,4,5} is 960. - Jon Perry, May 24 2013
a(n) gives the number of non-occupied corners in tree-like tableaux of size n+1 (see Gao et al. link). - Michel Marcus, Nov 18 2015
a(n) is the number of sequences of n+2 balls colored with at most n colors such that exactly three balls are the same color as some other ball in the sequence. - Jeremy Dover, Sep 26 2017
a(n) is the number of triangles (3-cycles) in the (n+1)-alternating group graph. - Eric W. Weisstein, Jun 09 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..300
D. Dumont, Interpretations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
Alice L. L. Gao, Emily X. L. Gao, and Brian Y. Sun, Zubieta's Conjecture on the Enumeration of Corners in Tree-like Tableaux, arXiv:1511.05434 [math.CO], 2015. The second version of this paper has a different title and different authors: A. L. L. Gao, E. X. L. Gao, P. Laborde-Zubieta, and B. Y. Sun, Enumeration of Corners in Tree-like Tableaux and a Conjectural (a,b)-analogue, arXiv preprint arXiv:1511.05434v2, 2015.
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
Eric Weisstein's World of Mathematics, Alternating Group Graph.
Eric Weisstein's World of Mathematics, Graph Cycle.
FORMULA
a(n) = A090672(n)/2.
a(n) = A052571(n+2)/6. - Zerinvary Lajos, May 11 2007
a(n) = Sum_{m=0..n} Sum_{k=-1..n} Sum_{j=1..n} n!/6, n >= 0. - Zerinvary Lajos, May 11 2007
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j)) then a(n+1) = (-1)^(n-1)*f(n,1,-4), (n >= 1). - Milan Janjic, Mar 01 2009
E.g.f.: (-1+3*x)/(3!*(1-x)^3), a(0) = -1/3!. Such e.g.f. computations resulted from e-mail exchange with Gary Detlefs. - Wolfdieter Lang, May 27 2010
a(n) = ((n+3)!/2) * Sum_{j=i..k} (k+1)!/(k+3)!, with offset 0. - Gary Detlefs, Aug 05 2010
a(n) = (n+2)!*Sum_{k=1..n-1} 1/((2*k+4)*(k+3)). - Gary Detlefs, Oct 09 2011
a(n) = (n+2)!*(1 + 3*(H(n+1) - H(n+2)))/6, where H(n) is the n-th harmonic number. - Gary Detlefs, Oct 09 2011
With offset = 0, e.g.f.: x/(1-x)^4. - Geoffrey Critzer, Aug 30 2013
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 3*(Ei(1) - gamma) - 6*e + 27/2, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=2} (-1)^n/a(n) = 3*(gamma - Ei(-1)) - 3/2, where Ei(-1) = -A099285. (End)
MAPLE
[ seq((n-1)*(n+1)!/6, n=1..40) ];
a:=n->sum(sum(sum(n!/6, j=1..n), k=-1..n), m=0..n): seq(a(n), n=0..19); # Zerinvary Lajos, May 11 2007
seq(sum(mul(j, j=3..n), k=3..n)/3, n=2..21); # Zerinvary Lajos, Jun 01 2007
restart: G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n]/3!, n=2..21); # Zerinvary Lajos, Apr 01 2009
MATHEMATICA
Table[Sum[n!/6, {i, 3, n}], {n, 2, 21}] (* Zerinvary Lajos, Jul 12 2009 *)
Table[(n - 1) (n + 1)!/6, {n, 20}] (* Harvey P. Dale, Apr 07 2019 *)
Table[(n - 1) Pochhammer[4, n - 2], {n, 20}] (* Eric W. Weisstein, Jun 09 2019 *)
Table[(n - 1) Gamma[n + 2]/6, {n, 20}] (* Eric W. Weisstein, Jun 09 2019 *)
Range[0, 20]! CoefficientList[Series[x/(1 - x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Jun 09 2019 *)
PROG
(Magma) [(n-1)*Factorial(n+1)/6: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
(PARI) a(n)=(n-1)*(n+1)!/6 \\ Charles R Greathouse IV, May 24 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better definition from Robert Newstedt
STATUS
approved