[go: up one dir, main page]

login
Search: a045896 -id:a045896
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerator of b(n)-b(n+1), where b(n) = n/((n+1)(n+2)) = A026741/A045896.
+20
6
0, 1, 1, 1, 1, 5, 1, 7, 1, 3, 5, 11, 1, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 1, 25, 13, 9, 7, 29, 5, 31, 4, 11, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 2, 49, 25, 17, 13, 53, 9, 55, 7, 19, 29, 59, 5, 61, 31, 21, 8, 65, 11, 67, 17, 23, 35, 71, 3, 73
OFFSET
1,6
LINKS
Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), Article 00.2.9.
FORMULA
c(n) = a(n+1) is multiplicative with c(2^e) = 2^(e-3) if e > 2 and 1 otherwise, c(3^e) = 3^(e-1), and c(p^e) = p^e if p >= 5. [corrected by Amiram Eldar, Nov 20 2022]
Sum_{k=1..n} a(k) ~ (301/1152) * n^2. - Amiram Eldar, Nov 20 2022
EXAMPLE
0, 1/60, 1/60, 1/70, 1/84, 5/504, 1/120, 7/990, 1/165, 3/572,...
MATHEMATICA
b[n_] := n/((n + 1) (n + 2)); Numerator[-Differences[Array[b, 100]]]
(* or *)
f[p_, e_] := p^e; f[2, e_] := If[e < 3, 1, 2^(e - 3)]; f[3, e_] := 3^(e - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n - 1]; Array[a, 100] (* Amiram Eldar, Nov 20 2022 *)
CROSSREFS
Row 3 of table in A051714/A051715.
KEYWORD
nonn,frac,easy,mult
STATUS
approved
Denominator of b(n)-b(n+1), where b(n) = n/((n+1)(n+2)) = A026741/A045896.
+20
4
1, 60, 60, 70, 84, 504, 120, 990, 165, 572, 1092, 2730, 280, 4080, 2448, 1938, 855, 7980, 1540, 10626, 3036, 4600, 7800, 17550, 819, 21924, 12180, 8990, 7440, 32736, 5984, 39270, 5355, 15540, 25308, 54834, 4940, 63960, 34440
OFFSET
1,2
LINKS
M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
EXAMPLE
0, 1/60, 1/60, 1/70, 1/84, 5/504, 1/120, 7/990, 1/165, 3/572,...
MATHEMATICA
Denominator[#[[1]]-#[[2]]&/@(Partition[#[[1]]/(#[[2]]#[[3]])&/@Partition[ Range[50], 3, 1], 2, 1])] (* Harvey P. Dale, Nov 15 2014 *)
CROSSREFS
Cf. A051712. Row 3 of table in A051714/A051715.
KEYWORD
nonn,frac,easy
STATUS
approved
Hexagonal numbers: a(n) = n*(2*n-1).
(Formerly M4108 N1705)
+10
442
0, 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 3003, 3160, 3321, 3486, 3655, 3828, 4005, 4186, 4371, 4560
OFFSET
0,3
COMMENTS
Number of edges in the join of two complete graphs, each of order n, K_n * K_n. - Roberto E. Martinez II, Jan 07 2002
The power series expansion of the entropy function H(x) = (1+x)log(1+x) + (1-x)log(1-x) has 1/a_i as the coefficient of x^(2i) (the odd terms being zero). - Tommaso Toffoli (tt(AT)bu.edu), May 06 2002
Partial sums of A016813 (4n+1). Also with offset = 0, a(n) = (2n+1)(n+1) = A005408 * A000027 = 2n^2 + 3n + 1, i.e., a(0) = 1. - Jeremy Gardiner, Sep 29 2002
Sequence also gives the greatest semiperimeter of primitive Pythagorean triangles having inradius n-1. Such a triangle has consecutive longer sides, with short leg 2n-1, hypotenuse a(n) - (n-1) = A001844(n), and area (n-1)*a(n) = 6*A000330(n-1). - Lekraj Beedassy, Apr 23 2003
Number of divisors of 12^(n-1), i.e., A000005(A001021(n-1)). - Henry Bottomley, Oct 22 2001
More generally, if p1 and p2 are two arbitrarily chosen distinct primes then a(n) is the number of divisors of (p1^2*p2)^(n-1) or equivalently of any member of A054753^(n-1). - Ant King, Aug 29 2011
Number of standard tableaux of shape (2n-1,1,1) (n>=1). - Emeric Deutsch, May 30 2004
It is well known that for n>0, A014105(n) [0,3,10,21,...] is the first of 2n+1 consecutive integers such that the sum of the squares of the first n+1 such integers is equal to the sum of the squares of the last n; e.g., 10^2 + 11^2 + 12^2 = 13^2 + 14^2.
Less well known is that for n>1, a(n) [0,1,6,15,28,...] is the first of 2n consecutive integers such that sum of the squares of the first n such integers is equal to the sum of the squares of the last n-1 plus n^2; e.g., 15^2 + 16^2 + 17^2 = 19^2 + 20^2 + 3^2. - Charlie Marion, Dec 16 2006
a(n) is also a perfect number A000396 when n is an even superperfect number A061652. - Omar E. Pol, Sep 05 2008
Sequence found by reading the line from 0, in the direction 0, 6, ... and the line from 1, in the direction 1, 15, ..., in the square spiral whose vertices are the generalized hexagonal numbers A000217. - Omar E. Pol, Jan 09 2009
Let Hex(n)=hexagonal number, T(n)=triangular number, then Hex(n)=T(n)+3*T(n-1). - Vincenzo Librandi, Nov 10 2010
For n>=1, 1/a(n) = Sum_{k=0..2*n-1} ((-1)^(k+1)*binomial(2*n-1,k)*binomial(2*n-1+k,k)*H(k)/(k+1)) with H(k) harmonic number of order k.
The number of possible distinct colorings of any 2 colors chosen from n colors of a square divided into quadrants. - Paul Cleary, Dec 21 2010
Central terms of the triangle in A051173. - Reinhard Zumkeller, Apr 23 2011
For n>0, a(n-1) is the number of triples (w,x,y) with all terms in {0,...,n} and max(|w-x|,|x-y|) = |w-y|. - Clark Kimberling, Jun 12 2012
a(n) is the number of positions of one domino in an even pyramidal board with base 2n. - César Eliud Lozada, Sep 26 2012
Partial sums give A002412. - Omar E. Pol, Jan 12 2013
Let a triangle have T(0,0) = 0 and T(r,c) = |r^2 - c^2|. The sum of the differences of the terms in row(n) and row(n-1) is a(n). - J. M. Bergot, Jun 17 2013
a(n+1) = A128918(2*n+1). - Reinhard Zumkeller, Oct 13 2013
With T_(i+1,i)=a(i+1) and all other elements of the lower triangular matrix T zero, T is the infinitesimal generator for A176230, analogous to A132440 for the Pascal matrix. - Tom Copeland, Dec 11 2013
a(n) is the number of length 2n binary sequences that have exactly two 1's. a(2) = 6 because we have: {0,0,1,1}, {0,1,0,1}, {0,1,1,0}, {1,0,0,1}, {1,0,1,0}, {1,1,0,0}. The ordinary generating function with interpolated zeros is: (x^2 + 3*x^4)/(1-x^2)^3. - Geoffrey Critzer, Jan 02 2014
For n > 0, a(n) is the largest integer k such that k^2 + n^2 is a multiple of k + n. More generally, for m > 0 and n > 0, the largest integer k such that k^(2*m) + n^(2*m) is a multiple of k + n is given by k = 2*n^(2*m) - n. - Derek Orr, Sep 04 2014
Binomial transform of (0, 1, 4, 0, 0, 0, ...) and second partial sum of (0, 1, 4, 4, 4, ...). - Gary W. Adamson, Oct 05 2015
a(n) also gives the dimension of the simple Lie algebras D_n, for n >= 4. - Wolfdieter Lang, Oct 21 2015
For n > 0, a(n) equals the number of compositions of n+11 into n parts avoiding parts 2, 3, 4. - Milan Janjic, Jan 07 2016
Also the number of minimum dominating sets and maximal irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Jun 29 and Aug 17 2017
As Beedassy's formula shows, this Hexagonal number sequence is the odd bisection of the Triangle number sequence. Both of these sequences are figurative number sequences. For A000384, a(n) can be found by multiplying its triangle number by its hexagonal number. For example let's use the number 153. 153 is said to be the 17th triangle number but is also said to be the 9th hexagonal number. Triangle(17) Hexagonal(9). 17*9=153. Because the Hexagonal number sequence is a subset of the Triangle number sequence, the Hexagonal number sequence will always have both a triangle number and a hexagonal number. n* (2*n-1) because (2*n-1) renders the triangle number. - Bruce J. Nicholson, Nov 05 2017
Also numbers k with the property that in the symmetric representation of sigma(k) the smallest Dyck path has a central valley and the largest Dyck path has a central peak, n >= 1. Thus all hexagonal numbers > 0 have middle divisors. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
k^a(n-1) mod n = 1 for prime n and k=2..n-1. - Joseph M. Shunia, Feb 10 2019
Consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z: a(n+1) gives the semiperimeter of related triangles; A005408, A046092 and A001844 give the X, Y and Z values. - Ralf Steiner, Feb 25 2020
See A002939(n) = 2*a(n) for the corresponding perimeters. - M. F. Hasler, Mar 09 2020
It appears that these are the numbers k with the property that the smallest subpart in the symmetric representation of sigma(k) is 1. - Omar E. Pol, Aug 28 2021
The above conjecture is true. See A280851 for a proof. - Hartmut F. W. Hoft, Feb 02 2022
The n-th hexagonal number equals the sum of the n consecutive integers with the same parity starting at 2*n-1; for example, 1, 2+4, 3+5+7, 4+6+8+10, etc. In general, the n-th 2k-gonal number is the sum of the n consecutive integers with the same parity starting at (k-2)*n - (k-3). When k = 1 and 2, this result generates the positive integers, A000027, and the squares, A000290, respectively. - Charlie Marion, Mar 02 2022
Conjecture: For n>0, min{k such that there exist subsets A,B of {0,1,2,...,a(n)} such that |A|=|B|=k and A+B={0,1,2,...,2*a(n)}} = 2*n. - Michael Chu, Mar 09 2022
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 122-123.
LINKS
Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
Elena Deza and Michel Deza, Figurate Numbers: presentation of a book, 3rd Montreal-Toronto Workshop in Number Theory, October 7-9, 2011.
Anicius Manlius Severinus Boethius, De institutione arithmetica, Book 2, section 15.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, The Ramanujan Journal, October 2011, 26:109. DOI: 10.1007/s11139-011-9325-y.
Cesar Ceballos and Viviane Pons, The s-weak order and s-permutahedra II: The combinatorial complex of pure intervals, arXiv:2309.14261 [math.CO], 2023. See p. 41.
Paul Cooijmans, Odds.
Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023.
Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 32.
Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
J. C. Su, On some properties of two simultaneous polygonal sequences, JIS 10 (2007) 07.10.4, example 4.6.
Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
Eric Weisstein's World of Mathematics, Cocktail Party Graph.
Eric Weisstein's World of Mathematics, Dominating Set.
Eric Weisstein's World of Mathematics, Hexagonal Number.
Eric Weisstein's World of Mathematics, Maximal Irredundant Set.
Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008), pp. 45-52.
FORMULA
a(n) = Sum_{k=1..n} tan^2((k - 1/2)*Pi/(2n)). - Ignacio Larrosa Cañestro, Apr 17 2001
E.g.f.: exp(x)*(x+2x^2). - Paul Barry, Jun 09 2003
G.f.: x*(1+3*x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation, dropping the initial zero
a(n) = A000217(2*n-1) = A014105(-n).
a(n) = 4*A000217(n-1) + n. - Lekraj Beedassy, Jun 03 2004
a(n) = right term of M^n * [1,0,0], where M = the 3 X 3 matrix [1,0,0; 1,1,0; 1,4,1]. Example: a(5) = 45 since M^5 *[1,0,0] = [1,5,45]. - Gary W. Adamson, Dec 24 2006
Row sums of triangle A131914. - Gary W. Adamson, Jul 27 2007
Row sums of n-th row, triangle A134234 starting (1, 6, 15, 28, ...). - Gary W. Adamson, Oct 14 2007
Starting with offset 1, = binomial transform of [1, 5, 4, 0, 0, 0, ...]. Also, A004736 * [1, 4, 4, 4, ...]. - Gary W. Adamson, Oct 25 2007
a(n)^2 + (a(n)+1)^2 + ... + (a(n)+n-1)^2 = (a(n)+n+1)^2 + ... + (a(n)+2n-1)^2 + n^2; e.g., 6^2 + 7^2 = 9^2 + 2^2; 28^2 + 29^2 + 30^2 + 31^2 = 33^2 + 34^2 + 35^2 + 4^2. - Charlie Marion, Nov 10 2007
a(n) = binomial(n+1,2) + 3*binomial(n,2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=6. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 4*n - 3 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
a(n) = A007606(A000290(n)). - Reinhard Zumkeller, Feb 12 2011
a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Aug 26 2011
a(n+1) = A045896(2*n). - Reinhard Zumkeller, Dec 12 2011
a(2^n) = 2^(2n+1) - 2^n. - Ivan N. Ianakiev, Apr 13 2013
a(n) = binomial(2*n,2). - Gary Detlefs, Jul 28 2013
a(4*a(n)+7*n+1) = a(4*a(n)+7*n) + a(4*n+1). - Vladimir Shevelev, Jan 24 2014
Sum_{n>=1} 1/a(n) = 2*log(2) = 1.38629436111989...= A016627. - Vaclav Kotesovec, Apr 27 2016
Sum_{n>=1} (-1)^n/a(n) = log(2) - Pi/2. - Vaclav Kotesovec, Apr 20 2018
a(n+1) = trinomial(2*n+1, 2) = trinomial(2*n+1, 4*n), for n >= 0, with the trinomial irregular triangle A027907. a(n+1) = (n+1)*(2*n+1) = (1/Pi)*Integral_{x=0..2} (1/sqrt(4 - x^2))*(x^2 - 1)^(2*n+1)*R(4*n-2, x) with the R polynomial coefficients given in A127672. [Comtet, p. 77, the integral formula for q=3, n -> 2*n+1, k = 2, rewritten with x = 2*cos(phi)]. - Wolfdieter Lang, Apr 19 2018
Sum_{n>=1} 1/(a(n))^2 = 2*Pi^2/3-8*log(2) = 1.0345588... = 10*A182448 - A257872. - R. J. Mathar, Sep 12 2019
a(n) = (A005408(n-1) + A046092(n-1) + A001844(n-1))/2. - Ralf Steiner, Feb 27 2020
Product_{n>=2} (1 - 1/a(n)) = 2/3. - Amiram Eldar, Jan 21 2021
a(n) = floor(Sum_{k=(n-1)^2..n^2} sqrt(k)), for n >= 1. - Amrit Awasthi, Jun 13 2021
a(n+1) = A084265(2*n), n>=0. - Hartmut F. W. Hoft, Feb 02 2022
a(n) = A000290(n) + A002378(n-1). - Charles Kusniec, Sep 11 2022
MAPLE
A000384:=n->n*(2*n-1); seq(A000384(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013
MATHEMATICA
Table[n*(2 n - 1), {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 1, 6}, 50] (* Harvey P. Dale, Sep 10 2015 *)
Join[{0}, Accumulate[Range[1, 312, 4]]] (* Harvey P. Dale, Mar 26 2016 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[6], n], {n, 0, 48}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[6, Range[0, 20]] (* Eric W. Weisstein, Aug 17 2017 *)
CoefficientList[Series[x*(1 + 3*x)/(1 - x)^3 , {x, 0, 100}], x] (* Stefano Spezia, Sep 02 2018 *)
PROG
(PARI) a(n)=n*(2*n-1)
(PARI) a(n) = binomial(2*n, 2) \\ Altug Alkan, Oct 06 2015
(Haskell)
a000384 n = n * (2 * n - 1)
a000384_list = scanl (+) 0 a016813_list
-- Reinhard Zumkeller, Dec 16 2012
(Python) # Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 4, y + 4
A000384 = aList()
print([next(A000384) for i in range(49)]) # Peter Luschny, Aug 04 2019
CROSSREFS
a(n)= A093561(n+1, 2), (4, 1)-Pascal column.
a(n) = A100345(n, n-1) for n>0.
Cf. A002939 (twice a(n): sums of Pythagorean triples (X, Y, Z=Y+1)).
Cf. A280851.
KEYWORD
nonn,easy,nice
EXTENSIONS
Partially edited by Joerg Arndt, Mar 11 2010
STATUS
approved
a(n) = n if n odd, n/2 if n even.
+10
195
0, 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 10, 21, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 16, 33, 17, 35, 18, 37, 19, 39, 20, 41, 21, 43, 22, 45, 23, 47, 24, 49, 25, 51, 26, 53, 27, 55, 28, 57, 29, 59, 30, 61, 31, 63, 32, 65, 33, 67, 34, 69, 35, 71, 36, 73, 37, 75, 38
OFFSET
0,4
COMMENTS
a(n) is the size of largest conjugacy class in D_2n, the dihedral group with 2n elements. - Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002
a(n+1) is the composition length of the n-th symmetric power of the natural representation of a finite subgroup of SL(2,C) of type D_4 (quaternion group). - Paul Boddington, Oct 23 2003
For n > 1, a(n) is the greatest common divisor of all permutations of {0, 1, ..., n} treated as base n + 1 integers. - David Scambler, Nov 08 2006 (see the Mathematics Stack Exchange link below).
From Dimitrios Choussos (choussos(AT)yahoo.de), May 11 2009: (Start)
Sequence A075888 and the above sequence are fitting together.
First 2 entries of this sequence have to be taken out.
In some cases two three or more sequenced entries of this sequence have to be added together to get the next entry of A075888.
Example: Sequences begin with 1, 3, 2, 5, 3, 7, 4, 9 (4 + 9 = 13, the next entry in A075888).
But it works out well up to primes around 50000 (haven't tested higher ones).
As A075888 gives a very regular graph. There seems to be a regularity in the primes. (End)
Starting with 1 = triangle A115359 * [1, 2, 3, ...]. - Gary W. Adamson, Nov 27 2009
From Gary W. Adamson, Dec 11 2009: (Start)
Let M be an infinite lower triangular matrix with (1, 1, 1, 0, 0, 0, ...) in every column, shifted down twice. This sequence starting with 1 = M * (1, 2, 3, ...)
M =
1;
1, 0;
1, 1, 0;
0, 1, 0, 0;
0, 1, 1, 0, 0;
0, 0, 1, 0, 0, 0;
0, 0, 1, 1, 0, 0, 0;
...
A026741 = M * (1, 2, 3, ...); but A002487 = lim_{n->infinity} M^n, a left-shifted vector considered as a sequence. (End)
A particular case of sequence for which a(n+3) = (a(n+2) * a(n+1)+q)/a(n) for every n > n0. Here n0 = 1 and q = -1. - Richard Choulet, Mar 01 2010
For n >= 2, a(n+1) is the smallest m such that s_n(2*m*(n-1))/(n-1) is even, where s_b(c) is the sum of digits of c in base b. - Vladimir Shevelev, May 02 2011
A001477 and A005408 interleaved. - Omar E. Pol, Aug 22 2011
Numerator of n/((n-1)*(n-2)). - Michael B. Porter, Mar 18 2012
Number of odd terms of n-th row in the triangles A162610 and A209297. - Reinhard Zumkeller, Jan 19 2013
For n >= 3, a(n) is the periodic of integer of spiral length ratio of spiral that have (n-1) circle centers. See illustration in links. - Kival Ngaokrajang, Dec 28 2013
This is the sequence of Lehmer numbers u_n(sqrt(R), Q) with the parameters R = 4 and Q = 1. It is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all natural numbers n and m. Cf. A005013 and A108412. - Peter Bala, Apr 18 2014
The sequence of convergents of the 2-periodic continued fraction [0; 1, -4, 1, -4, ...] = 1/(1 - 1/(4 - 1/(1 - 1/(4 - ...)))) = 2 begins [0/1, 1/1, 4/3, 3/2, 8/5, 5/3, 12/7, ...]. The present sequence is the sequence of denominators; the sequence of numerators of the continued fraction convergents [0, 1, 4, 3, 8, 5, 12, ...] is A022998, also a strong divisibility sequence. - Peter Bala, May 19 2014
For n >= 3, (a(n-2)/a(n))*Pi = vertex angle of a regular n-gon. See illustration in links. - Kival Ngaokrajang, Jul 17 2014
For n > 1, the numerator of the harmonic mean of the first n triangular numbers. - Colin Barker, Nov 13 2014
The difference sequence is a permutation of the integers. - Clark Kimberling, Apr 19 2015
From Timothy Hopper, Feb 26 2017: (Start)
Given the function a(n, p) = n/p if n mod p = 0, else n, then a possible formula is: a(n, p) = n*(1 + (p-1)*((n^(p-1)) mod p))/p, p prime, (n^(p-1)) mod p = 1, n not divisible by p. (Fermat's Little Theorem). Examples: p = 2; a(n), p = 3; A051176(n), p = 5; A060791(n), p = 7; A106608(n).
Conjecture: lcm(n, p) = p*a(n, p), gcd(n, p) = n/a(n, p).
(End)
Let r(n) = (a(n+1) + 1)/a(n+1) if n mod 2 = 1, a(n+1)/(a(n+1) + 2) otherwise; then lim_{k->oo} 2^(k+2) * Product_{n=0..k} r(n)^(k-n) = Pi. - Dimitris Valianatos, Mar 22 2021
REFERENCES
David Wells, Prime Numbers: The Most Mysterious Figures in Math. Hoboken, New Jersey: John Wiley & Sons (2005), p. 53.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, 2nd Ed. Penguin (1997), p. 79.
LINKS
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
Leonhard Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
Y. Ito and I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geometry (Warwick, 1996), 151-233, Cambridge University Press, 1999.
Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
Eric Weisstein's World of Mathematics, Simplex Simplex Picking
Eric Weisstein's World of Mathematics, Lehmer Number
FORMULA
G.f.: x*(1 + x + x^2)/(1-x^2)^2. - Len Smiley, Apr 30 2001
a(n) = 2*a(n-2) - a*(n-4) for n >= 4.
a(n) = n * 2^((n mod 2) - 1). - Reinhard Zumkeller, Oct 16 2001
a(n) = 2*n/(3 + (-1)^n). - Benoit Cloitre, Mar 24 2002
Multiplicative with a(2^e) = 2^(e-1) and a(p^e) = p^e, p > 2. - Vladeta Jovovic, Apr 05 2002
a(n) = n / gcd(n, 2). a(n)/A045896(n) = n/((n+1)*(n+2)).
For n > 0, a(n) = denominator of Sum_{i=1..n-1} 2/(i*(i+1)), numerator=A022998. - Reinhard Zumkeller, Apr 21 2012, Jul 25 2002 [thanks to Phil Carmody who noticed an error]
For n > 1, a(n) = GCD of the n-th and (n-1)th triangular numbers (A000217). - Ross La Haye, Sep 13 2003
Euler transform of finite sequence [1, 2, -1]. - Michael Somos, Jun 15 2005
G.f.: x * (1 - x^3) / ((1 - x) * (1 - x^2)^2) = Sum_{k>0} k * (x^k - x^(2*k)). - Michael Somos, Jun 15 2005
a(n+3) + a(n+2) = 3 + a(n+1) + a(n). a(n+3) * a(n) = - 1 + a(n+2) * a(n+1). a(n) = -a(-n) for all n in Z. - Michael Somos, Jun 15 2005
For n > 1, a(n) is the numerator of the average of 1, 2, ..., n - 1; i.e., numerator of A000217(n-1)/(n-1), with corresponding denominators [1, 2, 1, 2, ...] (A000034). - Rick L. Shepherd, Jun 05 2006
Equals A126988 * (1, -1, 0, 0, 0, ...). - Gary W. Adamson, Apr 17 2007
For n >= 1, a(n) = gcd(n,A000217(n)). - Rick L. Shepherd, Sep 12 2007
a(n) = numerator(n/(2*n-2)) for n >= 2; A022998(n-1) = denominator(n/(2*n-2)) for n >= 2. - Johannes W. Meijer, Jun 18 2009
a(n) = A167192(n+2, 2). - Reinhard Zumkeller, Oct 30 2009
a(n) = A106619(n) * A109012(n). - Paul Curtz, Apr 04 2011
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109043(n)/2.
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s). (End)
a(n) = A001318(n) - A001318(n-1) for n > 0. - Jonathan Sondow, Jan 28 2013
a((2*n+1)*2^p - 1) = 2^p - 1 + n*A151821(p+1), p >= 0 and n >= 0. - Johannes W. Meijer, Feb 03 2013
a(n+1) = denominator(H(n, 1)), n >= 0, with H(n, 1) = 2*n/(n+1) the harmonic mean of n and 1. a(n+1) = A227042(n, 1). See the formula a(n) = n/gcd(n, 2) given above. - Wolfdieter Lang, Jul 04 2013
a(n) = numerator(n/2). - Wesley Ivan Hurt, Oct 02 2013
a(n) = numerator(1 - 2/(n+2)), n >= 0; a(n) = denominator(1 - 2/n), n >= 1. - Kival Ngaokrajang, Jul 17 2014
a(n) = Sum_{i = floor(n/2)..floor((n+1)/2)} i. - Wesley Ivan Hurt, Apr 27 2016
Euler transform of length 3 sequence [1, 2, -1]. - Michael Somos, Jan 20 2017
G.f.: x / (1 - x / (1 - 2*x / (1 + 7*x / (2 - 9*x / (7 - 4*x / (3 - 7*x / (2 + 3*x))))))). - Michael Somos, Jan 20 2017
From Peter Bala, Mar 24 2019: (Start)
a(n) = Sum_{d|n, n/d odd} phi(d), where phi(n) is the Euler totient function A000010.
O.g.f.: Sum_{n >= 1} phi(n)*x^n/(1 - x^(2*n)). (End)
a(n) = A256095(2*n,n). - Alois P. Heinz, Jan 21 2020
E.g.f.: x*(2*cosh(x) + sinh(x))/2. - Stefano Spezia, Apr 28 2023
From Ctibor O. Zizka, Oct 05 2023: (Start)
For k >= 0, a(k) = gcd(k + 1, k*(k + 1)/2).
If (k mod 4) = 0 or 2 then a(k) = (k + 1).
If (k mod 4) = 1 or 3 then a(k) = (k + 1)/2. (End)
Sum_{n=1..oo} 1/a(n)^2 = 7*Pi^2/24. - Stefano Spezia, Dec 02 2023
EXAMPLE
G.f. = x + x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 3*x^6 + 7*x^7 + 4*x^8 + ...
MAPLE
A026741 := proc(n) if type(n, 'odd') then n; else n/2; end if; end proc: seq(A026741(n), n=0..76); # R. J. Mathar, Jan 22 2011
MATHEMATICA
Numerator[Abs[Table[Det[DiagonalMatrix[Table[1/i^2 - 1, {i, 1, n - 1}]] + 1], {n, 20}]]] (* Alexander Adamchuk, Jun 02 2006 *)
halfMax = 40; Riffle[Range[0, halfMax], Range[1, 2halfMax + 1, 2]] (* Harvey P. Dale, Mar 27 2011 *)
a[ n_] := Numerator[n / 2]; (* Michael Somos, Jan 20 2017 *)
Array[If[EvenQ[#], #/2, #]&, 80, 0] (* Harvey P. Dale, Jul 08 2023 *)
PROG
(PARI) a(n) = numerator(n/2) \\ Rick L. Shepherd, Sep 12 2007
(Sage) [lcm(n, 2) / 2 for n in range(77)] # Zerinvary Lajos, Jun 07 2009
(Magma) [2*n/(3+(-1)^n): n in [0..70]]; // Vincenzo Librandi, Aug 14 2011
(Haskell)
import Data.List (transpose)
a026741 n = a026741_list !! n
a026741_list = concat $ transpose [[0..], [1, 3..]]
-- Reinhard Zumkeller, Dec 12 2011
(Python)
def A026741(n): return n if n % 2 else n//2 # Chai Wah Wu, Apr 02 2021
CROSSREFS
Signed version is in A030640. Partial sums give A001318.
Cf. A051176, A060819, A060791, A060789 for n / gcd(n, k) with k = 3..6. See also A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).
Cf. A013942.
Cf. A227042 (first column). Cf. A005013 and A108412.
Cf. A256095.
KEYWORD
nonn,easy,nice,frac,mult
AUTHOR
J. Carl Bellinger (carlb(AT)ctron.com)
EXTENSIONS
Better description from Jud McCranie
Edited by Ralf Stephan, Jun 04 2003
STATUS
approved
a(n) = 2*n*(2*n+1).
+10
72
0, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3192, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550, 5852, 6162, 6480, 6806, 7140, 7482, 7832, 8190, 8556, 8930
OFFSET
0,2
COMMENTS
a(n) is the number of edges in (n+1) X (n+1) square grid with all horizontal, vertical and diagonal segments filled in. - Asher Auel, Jan 12 2000
In other words, the edge count of the (n+1) X (n+1) king graph. - Eric W. Weisstein, Jun 20 2017
Write 0,1,2,... in clockwise spiral; sequence gives numbers on one of 4 diagonals. (See Example section.)
The identity (4*n+1)^2 - (4*n^2+2*n)*(2)^2 = 1 can be written as A016813(n)^2 - a(n)*2^2 = 1. - Vincenzo Librandi, Jul 20 2010 - Nov 25 2012
Starting with "6" = binomial transform of [6, 14, 8, 0, 0, 0, ...]. - Gary W. Adamson, Aug 27 2010
The hyper-Wiener index of the crown graph G(n) (n>=3). The crown graph G(n) is the graph with vertex set {x(1), x(2), ..., x(n), y(1), y(2), ..., y(n)} and edge set {(x(i), y(j)): 1 <= i,j <= n, i != j} (= the complete bipartite graph K(n,n) with horizontal edges removed). The Hosoya-Wiener polynomial of G(n) is n(n-1)(t+t^2)+nt^3. - Emeric Deutsch, Aug 29 2013
Sum of the numbers from n to 3n. - Wesley Ivan Hurt, Oct 27 2014
REFERENCES
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
LINKS
Eric Weisstein's World of Mathematics, Crown Graph.
Eric Weisstein's World of Mathematics, Edge Count.
Eric Weisstein's World of Mathematics, King Graph.
Eric Weisstein's World of Mathematics, Queen Graph.
FORMULA
a(n) = 4*n^2 + 2*n.
a(n) = 2*A014105(n). - Omar E. Pol, May 21 2008
a(n) = floor((2*n + 1/2)^2). - Reinhard Zumkeller, Feb 20 2010
a(n) = A007494(n) + A173511(n) = A007742(n) + n. - Reinhard Zumkeller, Feb 20 2010
a(n) = 8*n+a(n-1) - 2 with a(0)=0. - Vincenzo Librandi, Jul 20 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 11 2011
a(n+1) = A045896(2*n+1). - Reinhard Zumkeller, Dec 12 2011
G.f.: 2*x*(3+x)/(1-x)^3. - Colin Barker, Jan 14 2012
From R. J. Mathar, Jan 15 2013: (Start)
Sum_{n>=1} 1/a(n) = 1 - log(2).
Sum_{n>=1} 1/a(n)^2 = 2*log(2) + Pi^2/6 - 3. (End)
a(n) = A118729(8*n+5). - Philippe Deléham, Mar 26 2013
a(n) = 1*A001477(n) + 2*A000217(n) + 3*A000290(n). - J. M. Bergot, Apr 23 2014
a(n) = 2 * A000217(2*n) = 2 * A014105(n). - Jon Perry, Oct 27 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 + log(2)/2 - 1. - Amiram Eldar, Feb 22 2022
a(n) = A003154(n+1) - A056220(n+1). - Leo Tavares, Mar 31 2022
E.g.f.: 2*exp(x)*x*(3 + 2*x). - Stefano Spezia, Apr 24 2024
EXAMPLE
64--65--66--67--68--69--70--71--72
|
63 36--37--38--39--40--41--42
| | |
62 35 16--17--18--19--20 43
| | | | |
61 34 15 4---5---6 21 44
| | | | | | |
60 33 14 3 0 7 22 45
| | | | | | | |
59 32 13 2---1 8 23 46
| | | | | |
58 31 12--11--10---9 24 47
| | | |
57 30--29--28--27--26--25 48
| |
56--55--54--53--52--51--50--49
MAPLE
A002943 := proc(n)
2*n*(2*n+1) ;
end proc: # R. J. Mathar, Jun 28 2013
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {0, 6, 20}, 40] (* Harvey P. Dale, Aug 11 2011 *)
Table[2 n (2 n + 1), {n, 0, 40}] (* Harvey P. Dale, Aug 11 2011 *)
PROG
(PARI) a(n)=2*n*(2*n+1) \\ Charles R Greathouse IV, Nov 20 2012
(Magma) [ 4*n^2+2*n: n in [0..50]]; // Vincenzo Librandi, Nov 25 2012
(Haskell)
a002943 n = 2 * n * (2 * n + 1) -- Reinhard Zumkeller, Jan 12 2014
CROSSREFS
Same as A033951 except start at 0.
Sequences from spirals: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, this sequence, A033996, A033988.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, this sequence = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
KEYWORD
nonn,easy,nice
EXTENSIONS
Formula fixed by Reinhard Zumkeller, Apr 09 2010
STATUS
approved
Numerators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)*(a(n,k) - a(n,k+1)), n >= 0, k >= 0.
+10
22
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, -1, 1, 1, 2, 1, -1, 0, 1, 1, 5, 2, -3, -1, 1, 1, 1, 3, 5, -1, -1, 1, 0, 1, 1, 7, 5, 0, -4, 1, 1, -1, 1, 1, 4, 7, 1, -1, -1, 1, -1, 0, 1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5, 1, 1, 5, 3, 8, -7, -9, 5, 7, -5, 5, 0, 1, 1, 11, 15, 27, -28, -343, 295, 200, -44, -1017, 691, -691
OFFSET
0,13
COMMENTS
Leading column gives the Bernoulli numbers A164555/A027642. - corrected by Paul Curtz, Apr 17 2014
FORMULA
From Fabián Pereyra, Jan 14 2023: (Start)
a(n,k) = numerator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)).
E.g.f.: A(x,t) = (x+log(1-t))/(1-t-exp(-x)) = (1+(1/2)*x+(1/6)*x^2/2!-(1/30)*x^4/4!+...)*1 + (1/2+(1/3)*x+(1/6)*x^2/2!+...)*t + (1/3+(1/4)*x+(3/20)*x^2/2!+...)*t^2 + .... (End)
EXAMPLE
Table begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 ...
1/2 1/3 1/4 1/5 1/6 1/7 ...
1/6 1/6 3/20 2/15 5/42 ...
0 1/30 1/20 2/35 5/84 ...
-1/30 -1/30 -3/140 -1/105 ...
Antidiagonals of numerator(a(n,k)):
1;
1, 1;
1, 1, 1;
1, 1, 1, 0;
1, 1, 3, 1, -1;
1, 1, 2, 1, -1, 0;
1, 1, 5, 2, -3, -1, 1;
1, 1, 3, 5, -1, -1, 1, 0;
1, 1, 7, 5, 0, -4, 1, 1, -1;
1, 1, 4, 7, 1, -1, -1, 1, -1, 0;
1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5;
MAPLE
a:= proc(n, k) option remember;
`if`(n=0, 1/(k+1), (k+1)*(a(n-1, k)-a(n-1, k+1)))
end:
seq(seq(numer(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
MATHEMATICA
nmax = 12; a[0, k_]:= 1/(k+1); a[n_, k_]:= a[n, k]= (k+1)(a[n-1, k]-a[n-1, k+1]); Numerator[Flatten[Table[a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]] (* Jean-François Alcover, Nov 28 2011 *)
PROG
(Magma)
function a(n, k)
if n eq 0 then return 1/(k+1);
else return (k+1)*(a(n-1, k) - a(n-1, k+1));
end if;
end function;
A051714:= func< n, k | Numerator(a(n, k)) >;
[A051714(k, n-k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 22 2023
(SageMath)
def a(n, k):
if (n==0): return 1/(k+1)
else: return (k+1)*(a(n-1, k) - a(n-1, k+1))
def A051714(n, k): return numerator(a(n, k))
flatten([[A051714(k, n-k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Apr 22 2023
CROSSREFS
Denominators are in A051715.
KEYWORD
sign,frac,nice,easy,tabl,look
EXTENSIONS
More terms from James A. Sellers, Dec 07 1999
STATUS
approved
Denominators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)(a(n,k)-a(n,k+1)), n >= 0, k >= 0.
+10
19
1, 2, 2, 3, 3, 6, 4, 4, 6, 1, 5, 5, 20, 30, 30, 6, 6, 15, 20, 30, 1, 7, 7, 42, 35, 140, 42, 42, 8, 8, 28, 84, 105, 28, 42, 1, 9, 9, 72, 84, 1, 105, 140, 30, 30, 10, 10, 45, 120, 140, 28, 105, 20, 30, 1, 11, 11, 110, 495, 3960, 924, 231, 165, 220, 66, 66, 12, 12, 66, 55, 495, 264, 308, 132, 165, 44, 66, 1
OFFSET
0,2
COMMENTS
Leading column gives the Bernoulli numbers A027641/A027642.
FORMULA
a(n,k) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)). - Fabián Pereyra, Jan 14 2023
EXAMPLE
Table begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 ...
1/2 1/3 1/4 1/5 1/6 1/7 ...
1/6 1/6 3/20 2/15 5/42 ...
0 1/30 1/20 2/35 5/84 ...
-1/30 -1/30 -3/140 -1/105 ...
MAPLE
a:= proc(n, k) option remember;
`if`(n=0, 1/(k+1), (k+1)*(a(n-1, k)-a(n-1, k+1)))
end:
seq(seq(denom(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
MATHEMATICA
nmax = 12; a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)(a[n-1, k]-a[n-1, k+1]); Denominator[ Flatten[ Table[ a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]](* Jean-François Alcover, Nov 28 2011 *)
CROSSREFS
Numerators are in A051714.
KEYWORD
nonn,frac,nice,easy,tabl,look
EXTENSIONS
More terms from James A. Sellers, Dec 08 1999
STATUS
approved
Denominator of c(n) = (n^2+n+2)/((n+1)*(n+2)*(n+3)).
+10
8
3, 6, 15, 60, 105, 21, 126, 360, 495, 330, 429, 1092, 1365, 420, 1020, 2448, 2907, 1710, 1995, 4620, 5313, 759, 3450, 7800, 8775, 4914, 5481, 12180, 13485, 3720, 8184, 17952, 19635, 10710, 11655, 25308, 27417, 3705, 15990, 34440, 37023, 19866, 21285, 45540
OFFSET
0,1
COMMENTS
All terms are multiples of 3.
Difference table of c(n):
1/3, 1/6, 2/15, 7/60, 2/21,...
-1/6, -1/30, -1/60, -1/84, -1/105,...
2/15, 1/60, 1/210, 1/420, 1/630,...
-7/60, -1/84, -1/420, -1/1260, -1/2520,... .
This is an autosequence of the second kind; the inverse binomial transform is the signed sequence. The main diagonal is the first upper diagonal multiplied by 2.
Denominators of the main diagonal: A051133(n+1).
Denominators of the first upper diagonal; A000911(n).
c(n) is a companion to A026741(n)/A045896(n).
Based on the Akiyama-Tanigawa transform applied to 1/(n+1) which yields the Bernoulli numbers A164555(n)/A027642(n).
Are the numerators of the main diagonal (-1)^n? If yes, what is the value of 1/3 - 1/30 + 1/210,... or 1 - 1/10 + 1/70 - 1/420, ... , from A002802(n)?
Is a(n+40) - a(n) divisible by 10?
No: a(5) = 21 but a(45) = 12972. # Robert Israel, Jul 17 2023
Are the common divisors to A014206(n) and A007531(n+3) of period 16: repeat 2, 4, 4, 2, 2, 16, 4, 2, 2, 4, 4, 2, 2, 8, 4, 2?
Reduce c(n) = f(n) = b(n)/a(n) = 1/3, 1/6, 2/15, 7/60, 11/105, 2/21, 11/126, 29/360, ... .
Consider the successively interleaved autosequences (also called eigensequences) of the second kind and of the first kind
1, 1/2, 1/3, 1/4, 1/5, 1/6, ...
0, 1/6, 1/6, 3/20, 2/15, 5/42, ...
1/3, 1/6, 2/15, 7/60, 11/105, 2/21, ...
0, 1/10, 1/10, 13/140, 3/35, 5/63, ...
1/5, 1/10, 3/35, 11/140, 23/315, 43/630, ...
0, 1/14, 1/14, 17/252, 4/63, ...
This array is Au1(m,n). Au1(0,0)=1, Au1(0,1)=1/2.
Au1(m+1,n) = 2*Au1(m,n+1) - Au1(m,n).
First row: see A003506, Leibniz's Harmonic Triangle.
Second row: A026741/A045896.
a(n) is the denominator of the third row f(n).
The first column is 1, 0, 1/3, 0, 1/5, 0, 1/7, 0, ... . Numerators: A093178(n+1). This incites, considering tan(1), to introduce before the first row
Ta0(n) = 0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, ... .
LINKS
FORMULA
c(n) = A014206(n)/A007531(n+3).
The sum of the difference table main diagonal is 1/3 - 1/30 + 1/210 - ... = 10*A086466-4 = 4*(sqrt(5)*log(phi)-1) = 0.3040894... - Jean-François Alcover, Apr 22 2014
a(n) = (n+1)*(n+2)*(n+3)/gcd(4*n - 4, n^2 + n + 2), where gcd(4*n - 4, n^2 + n + 2) is periodic with period 16. - Robert Israel, Jul 17 2023
MAPLE
seq(denom((n^2+n+2)/((n+1)*(n+2)*(n+3))), n=0..1000);
MATHEMATICA
Denominator[Table[(n^2+n+2)/Times@@(n+{1, 2, 3}), {n, 0, 50}]] (* Harvey P. Dale, Mar 27 2015 *)
PROG
(PARI) for(n=0, 100, print1(denominator((n^2+n+2)/((n+1)*(n+2)*(n+3))), ", ")) \\ Colin Barker, Apr 18 2014
KEYWORD
nonn,frac,look
AUTHOR
Paul Curtz, Apr 18 2014
EXTENSIONS
More terms from Colin Barker, Apr 18 2014
STATUS
approved
Row sums of the Eta triangle A160464
+10
6
-1, -9, -87, -2925, -75870, -2811375, -141027075, -18407924325, -1516052821500, -153801543183750, -18845978136851250, -2744283682352086875, -468435979952504313750, -92643070481933918821875
OFFSET
2,2
COMMENTS
It is conjectured that the row sums of the Eta triangle depend on five different sequences.
Two Maple algorithms are given. The first one gives the row sums according to the Eta triangle A160464 and the second one gives the row sums according to our conjecture.
FORMULA
Rowsums(n) = (-1) * A119951(n-1) * FF(n) for n >= 2.
FF(n) = SF(n) * FF(n-1) for n >= 3 with FF(2) =1.
SF(2*n) = A045896(n-2) / A160467(n) for n >= 2.
SF(2*n+1) = A000466(n) / A043529(n-1) for n >= 1.
MAPLE
nmax:=15; c(2) := -1/3: for n from 3 to nmax do c(n):=(2*n-2)*c(n-1)/(2*n-1)-1/ ((n-1)*(2*n-1)) end do: for n from 2 to nmax do GCS(n-1) := ln(1/(2^(-(2*(n-1)-1-floor(ln(n-1)/ ln(2))))))/ln(2); p(n):=2^(-GCS(n-1))*(2*n-1)!; ETA(n, 1) := p(n)*c(n) end do: mmax:=nmax: for m from 2 to mmax do ETA(2, m) := 0 end do: for n from 3 to nmax do for m from 2 to mmax do q(n) := (1+(-1)^(n-3)*(floor(ln(n-1)/ln(2)) - floor(ln(n-2)/ln(2)))): ETA(n, m) := q(n)*(-ETA(n-1, m-1)+(n-1)^2*ETA(n-1, m)) end do end do: for n from 2 to nmax do s1(n):=0: for m from 1 to n-1 do s1(n) := s1(n) + ETA(n, m) end do end do: seq(s1(n), n=2..nmax);
# End first program.
nmax:=nmax; A160467 := proc(n): denom(4*(4^n-1)*bernoulli(2*n)/n) end: A043529 := proc(n): ceil(frac(log[2](n+1))+1) end proc: A000466 := proc(n): 4*n^2-1 end proc: A045896 := proc(n): denom((n)/((n+1)*(n+2))) end proc: A119951 := proc(n) : numer(sum(((2*k1)!/(k1!*(k1+1)!))/2^(2*(k1-1)), k1=1..n)) end proc: for n from 1 to nmax do SF(2*n+1):= A000466(n)/A043529(n-1); SF(2*n+2) := A045896(n-1)/A160467(n+1) end do: FF(2):=1: for n from 3 to nmax do FF(n) := SF(n) * FF(n-1) end do: for n from 2 to nmax do s2(n):= (-1)*A119951(n-1)*FF(n) end do: seq(s2(n), n=2..nmax);
# End second program.
CROSSREFS
A160464 is the Eta triangle.
Row sum factors A119951, A000466, A043529, A045896 and A160467.
KEYWORD
easy,sign
AUTHOR
Johannes W. Meijer, May 24 2009
STATUS
approved
Period length of pairs (a,b) where a has period 2n-2 and b has period n.
+10
4
0, 2, 12, 12, 40, 30, 84, 56, 144, 90, 220, 132, 312, 182, 420, 240, 544, 306, 684, 380, 840, 462, 1012, 552, 1200, 650, 1404, 756, 1624, 870, 1860, 992, 2112, 1122, 2380, 1260, 2664, 1406, 2964, 1560
OFFSET
1,2
LINKS
Ralf W. Grosse-Kunstleve, Origin of EIS sequences A045895 & A045896. [Wayback Machine copy]
FORMULA
a(n) = A204557(n) - A204556(n). - Reinhard Zumkeller, Jan 18 2012
From Amiram Eldar, Sep 14 2022: (Start)
a(n) = n*(n-1) for n even.
a(n) = 2*n*(n-1) for n odd.
a(n) = lcm(2*n-2, n).
a(n) = 2*A045896(n-2).
Sum_{n>=2} 1/a(n) = (log(2)+1)/2. (End)
MATHEMATICA
Table[ LCM[ 2*n-2, n ], {n, 40} ]
PROG
(PARI) for(n=1, 50, print1(lcm(2*n-2, n), ", ")) \\ G. C. Greubel, Jun 15 2018
(Magma) [Lcm(2*n-2, n): n in [1..50]]; // G. C. Greubel, Jun 15 2018
CROSSREFS
KEYWORD
nonn
STATUS
approved

Search completed in 0.020 seconds