[go: up one dir, main page]

login
A051715
Denominators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)(a(n,k)-a(n,k+1)), n >= 0, k >= 0.
19
1, 2, 2, 3, 3, 6, 4, 4, 6, 1, 5, 5, 20, 30, 30, 6, 6, 15, 20, 30, 1, 7, 7, 42, 35, 140, 42, 42, 8, 8, 28, 84, 105, 28, 42, 1, 9, 9, 72, 84, 1, 105, 140, 30, 30, 10, 10, 45, 120, 140, 28, 105, 20, 30, 1, 11, 11, 110, 495, 3960, 924, 231, 165, 220, 66, 66, 12, 12, 66, 55, 495, 264, 308, 132, 165, 44, 66, 1
OFFSET
0,2
COMMENTS
Leading column gives the Bernoulli numbers A027641/A027642.
FORMULA
a(n,k) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)). - Fabián Pereyra, Jan 14 2023
EXAMPLE
Table begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 ...
1/2 1/3 1/4 1/5 1/6 1/7 ...
1/6 1/6 3/20 2/15 5/42 ...
0 1/30 1/20 2/35 5/84 ...
-1/30 -1/30 -3/140 -1/105 ...
MAPLE
a:= proc(n, k) option remember;
`if`(n=0, 1/(k+1), (k+1)*(a(n-1, k)-a(n-1, k+1)))
end:
seq(seq(denom(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
MATHEMATICA
nmax = 12; a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)(a[n-1, k]-a[n-1, k+1]); Denominator[ Flatten[ Table[ a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]](* Jean-François Alcover, Nov 28 2011 *)
CROSSREFS
Numerators are in A051714.
Sequence in context: A165122 A240505 A372007 * A143269 A036817 A239962
KEYWORD
nonn,frac,nice,easy,tabl,look
EXTENSIONS
More terms from James A. Sellers, Dec 08 1999
STATUS
approved