reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Numerators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)*(a(n,k) - a(n,k+1)), n >= 0, k >= 0.
1 1/2 1/3 1/4 1/5 1/6 1/7 ...
0 1/30 1/20 2/35 5/84 ...
Antidiagonals of numerator(a(n,k)):
1;
1, 1;
1, 1, 1;
1, 1, 1, 0;
1, 1, 3, 1, -1;
1, 1, 2, 1, -1, 0;
1, 1, 5, 2, -3, -1, 1;
1, 1, 3, 5, -1, -1, 1, 0;
1, 1, 7, 5, 0, -4, 1, 1, -1;
1, 1, 4, 7, 1, -1, -1, 1, -1, 0;
1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5;
nmax = 12; a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)(a[n-1, k]-a[n-1, k+1]); Numerator[ Flatten[ Table[ a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]] (* Jean-François Alcover, Nov 28 2011 *)
(Magma)
function a(n, k)
if n eq 0 then return 1/(k+1);
else return (k+1)*(a(n-1, k) - a(n-1, k+1));
end if;
end function;
A051714:= func< n, k | Numerator(a(n, k)) >;
[A051714(k, n-k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 22 2023
(SageMath)
def a(n, k):
if (n==0): return 1/(k+1)
else: return (k+1)*(a(n-1, k) - a(n-1, k+1))
def A051714(n, k): return numerator(a(n, k))
flatten([[A051714(k, n-k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Apr 22 2023
approved
editing
proposed
approved
editing
proposed
E.g.f.: A(x,t) = (x+log(1-t))/(1-t-exp(-x)) = (1+(1/2)*x+(1/6)*x^2/2!-(1/30)*x^4/4!+...)*1 + (1/2+(1/3)*x+(1/6)*x^2/2!+...)*t + (1/3+(1/4)*x+(3/20)*x^2/2!+...)*t^2 + .... (End)
proposed
editing
editing
proposed
a(n,k) = numerator(Sum_{j,=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)).
E.g.f.: A(x,t) = (x+log(1-t)/(1-t-exp(-x)) = (1+(1/2)*x+(1/6)*x^2/2!-(1/30)*x^4/4!+...)*1 + (1/2+(1/3)*x+(1/6)*x^2/2!+...)*t + (1/3+(1/4)*x+(3/20)*x^2/2!+...)*t^2 + .... (End)