OFFSET
1,2
COMMENTS
See the comments under A227041. a(n,m) gives the denominator of H(n,m) = 2*n*m/(n+m) in lowest terms.
LINKS
Eric Weisstein's World of Mathematics, Harmonic Mean.
FORMULA
a(n,m) = denominator(2*n*m/(n+m)), 1 <= m <= n.
a(n,m) = (n+m)/gcd(2*n*m, n+m) = (n+m)/gcd(n+m, 2*m^2), 1 <= m <= n.
EXAMPLE
The triangle of denominators of H(n,m), called a(n,m) begins:
n\m 1 2 3 4 5 6 7 8 9 10 11 ...
1: 1
2: 3 1
3: 2 5 1
4: 5 3 7 1
5: 3 7 4 9 1
6: 7 1 1 5 11 1
7: 4 9 5 11 6 13 1
8; 9 5 11 3 13 7 15 1
9: 5 11 2 13 7 5 8 17 1
10: 11 3 13 7 3 2 17 9 19 1
11: 6 13 7 15 8 17 9 19 10 21 1
...
For the triangle of the rationals H(n,m) see the example section of A227041.
H(4,2) = denominator(16/6) = denominator(8/3) = 3 = 6/gcd(6,8) = 6/2.
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Jul 01 2013
STATUS
approved