OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1/(1-q/ (1-q/(1-q/ (1-q^2/(1-q^2/ (1-q^3/(1-q^3/ (1-q^4/(1-q^4/ (1-q^5/(1-q^5/ (1-...))))))))))) ).
G.f. A(x) = 1/(1 - B(x)) where B(x) is the g.f. of A006958.
a(n) ~ c * d^n, where d = 2.751949072495748078279227332764623096815571855905843246297955690122791154... and c = 0.215973947378529032758849789768859077066690378163074586384819930605436492... - Vaclav Kotesovec, Sep 05 2017
MATHEMATICA
nmax = 40; CoefficientList[Series[1/(1 - x/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[nmax + 2] - Floor[Range[nmax + 2]/2])]]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
PROG
(PARI) N = 66; q = 'q + O('q^N);
G(k) = if(k>N, 1, 1 - q^(k+1) / (1 - q^(k+1) / G(k+1) ) );
gf = 1 /(1- q/G(0));
Vec(gf)
CROSSREFS
Cf. A006958 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226729 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226728 (g.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A227309 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).
Cf. A227310 (g.f.: 1/G(0), where G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ) ).
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jul 06 2013
STATUS
approved