[go: up one dir, main page]

login
Search: a039833 -id:a039833
     Sort: relevance | references | number | modified | created      Format: long | short | data
Squarefree semiprimes: Numbers that are the product of two distinct primes.
(Formerly M4082)
+10
471
6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205
OFFSET
1,1
COMMENTS
Numbers k such that phi(k) + sigma(k) = 2*(k+1). - Benoit Cloitre, Mar 02 2002
Numbers k such that tau(k) = omega(k)^omega(k). - Benoit Cloitre, Sep 10 2002 [This comment is false. If k = 900 then tau(k) = omega(k)^omega(k) = 27 but 900 = (2*3*5)^2 is not the product of two distinct primes. - Peter Luschny, Jul 12 2023]
Could also be called 2-almost primes. - Rick L. Shepherd, May 11 2003
From the Goldston et al. reference's abstract: "lim inf [as n approaches infinity] [(a(n+1) - a(n))] <= 26. If an appropriate generalization of the Elliott-Halberstam Conjecture is true, then the above bound can be improved to 6." - Jonathan Vos Post, Jun 20 2005
The maximal number of consecutive integers in this sequence is 3 - there cannot be 4 consecutive integers because one of them would be divisible by 4 and therefore would not be product of distinct primes. There are several examples of 3 consecutive integers in this sequence. The first one is 33 = 3 * 11, 34 = 2 * 17, 35 = 5 * 7; (see A039833). - Matias Saucedo (solomatias(AT)yahoo.com.ar), Mar 15 2008
Number of terms less than or equal to 10^k for k >= 0 is A036351(k). - Robert G. Wilson v, Jun 26 2012
Are these the numbers k whose difference between the sum of proper divisors of k and the arithmetic derivative of k is equal to 1? - Omar E. Pol, Dec 19 2012
Intersection of A001358 and A030513. - Wesley Ivan Hurt, Sep 09 2013
A237114(n) (smallest semiprime k^prime(n)+1) is a term, for n != 2. - Jonathan Sondow, Feb 06 2014
a(n) are the reduced denominators of p_2/p_1 + p_4/p_3, where p_1 != p_2, p_3 != p_4, p_1 != p_3, and the p's are primes. In other words, (p_2*p_3 + p_1*p_4) never shares a common factor with p_1*p_3. - Richard R. Forberg, Mar 04 2015
Conjecture: The sums of two elements of a(n) forms a set that includes all primes greater than or equal to 29 and all integers greater than or equal to 83 (and many below 83). - Richard R. Forberg, Mar 04 2015
The (disjoint) union of this sequence and A001248 is A001358. - Jason Kimberley, Nov 12 2015
A263990 lists the subsequence of a(n) where a(n+1)=1+a(n). - R. J. Mathar, Aug 13 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Zervos, Marie: Sur une classe de nombres composés. Actes du Congrès interbalkanique de mathématiciens 267-268 (1935)
LINKS
D. A. Goldston, S. W. Graham, J. Pimtz and Y. Yildirim, "Small Gaps Between Primes or Almost Primes", arXiv:math/0506067 [math.NT], March 2005.
G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Applications, 24 (1992), 79-99. (Annotated scanned copy)
R. J. Mathar, Series of reciprocal powers of k-almost primes arXiv:0803.0900, table 6 k=2 shows sum 1/a(n)^s.
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
A000005(a(n)^(k-1)) = A000290(k) for all k>0. - Reinhard Zumkeller, Mar 04 2007
A109810(a(n)) = 4; A178254(a(n)) = 6. - Reinhard Zumkeller, May 24 2010
A056595(a(n)) = 3. - Reinhard Zumkeller, Aug 15 2011
a(n) = A096916(n) * A070647(n). - Reinhard Zumkeller, Sep 23 2011
A211110(a(n)) = 3. - Reinhard Zumkeller, Apr 02 2012
Sum_{n >= 1} 1/a(n)^s = (1/2)*(P(s)^2 - P(2*s)), where P is Prime Zeta. - Enrique Pérez Herrero, Jun 24 2012
A050326(a(n)) = 2. - Reinhard Zumkeller, May 03 2013
sopf(a(n)) = a(n) - phi(a(n)) + 1 = sigma(a(n)) - a(n) - 1. - Wesley Ivan Hurt, May 18 2013
d(a(n)) = 4. Omega(a(n)) = 2. omega(a(n)) = 2. mu(a(n)) = 1. - Wesley Ivan Hurt, Jun 28 2013
a(n) ~ n log n/log log n. - Charles R Greathouse IV, Aug 22 2013
A089233(a(n)) = 1. - Reinhard Zumkeller, Sep 04 2013
From Peter Luschny, Jul 12 2023: (Start)
For k > 1: k is term of a <=> k^A001221(k) = k*A007947(k).
For k > 1: k is term of a <=> k^A001222(k) = k*A007947(k).
For k > 1: k is term of a <=> A363923(k) = k. (End)
MAPLE
N:= 1001: # to get all terms < N
Primes:= select(isprime, [2, seq(2*k+1, k=1..floor(N/2))]):
{seq(seq(p*q, q=Primes[1..ListTools:-BinaryPlace(Primes, N/p)]), p=Primes)} minus {seq(p^2, p=Primes)};
# Robert Israel, Jul 23 2014
# Alternative, using A001221:
isA006881 := proc(n)
if numtheory[bigomega](n) =2 and A001221(n) = 2 then
true ;
else
false ;
end if;
end proc:
A006881 := proc(n) if n = 1 then 6; else for a from procname(n-1)+1 do if isA006881(a) then return a; end if; end do: end if;
end proc: # R. J. Mathar, May 02 2010
# Alternative:
with(NumberTheory): isA006881 := n -> is(NumberOfPrimeFactors(n, 'distinct') = 2 and NumberOfPrimeFactors(n) = 2):
select(isA006881, [seq(1..205)]); # Peter Luschny, Jul 12 2023
MATHEMATICA
mx = 205; Sort@ Flatten@ Table[ Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[ mx/Prime[n]]}] (* Robert G. Wilson v, Dec 28 2005, modified Jul 23 2014 *)
sqFrSemiPrimeQ[n_] := Last@# & /@ FactorInteger@ n == {1, 1}; Select[Range[210], sqFrSemiPrimeQ] (* Robert G. Wilson v, Feb 07 2012 *)
With[{upto=250}, Select[Sort[Times@@@Subsets[Prime[Range[upto/2]], {2}]], #<=upto&]] (* Harvey P. Dale, Apr 30 2018 *)
PROG
(PARI) for(n=1, 214, if(bigomega(n)==2&&omega(n)==2, print1(n, ", ")))
(PARI) for(n=1, 214, if(bigomega(n)==2&&issquarefree(n), print1(n, ", ")))
(PARI) list(lim)=my(v=List()); forprime(p=2, sqrt(lim), forprime(q=p+1, lim\p, listput(v, p*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
(Haskell)
a006881 n = a006881_list !! (n-1)
a006881_list = filter chi [1..] where
chi n = p /= q && a010051 q == 1 where
p = a020639 n
q = n `div` p
-- Reinhard Zumkeller, Aug 07 2011
(Sage)
def A006881_list(n) :
R = []
for i in (6..n) :
d = prime_divisors(i)
if len(d) == 2 :
if d[0]*d[1] == i :
R.append(i)
return R
A006881_list(205) # Peter Luschny, Feb 07 2012
(Magma) [n: n in [1..210] | EulerPhi(n) + DivisorSigma(1, n) eq 2*(n+1)]; // Vincenzo Librandi, Sep 17 2015
(Python)
from sympy import factorint
def ok(n): f=factorint(n); return len(f) == 2 and sum(f[p] for p in f) == 2
print(list(filter(ok, range(1, 206)))) # Michael S. Branicky, Jun 10 2021
(Python)
from math import isqrt
from sympy import primepi, primerange
def A006881(n):
def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 15 2024
CROSSREFS
Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A030229, A051709, A001221 (omega(n)), A001222 (bigomega(n)), A001358 (semiprimes), A005117 (squarefree), A007304 (squarefree 3-almost primes), A213952, A039833, A016105 (subsequences), A237114 (subsequence, n != 2).
Subsequence of A007422.
Cf. A259758 (subsequence), A036351, A363923.
KEYWORD
nonn,easy,nice
EXTENSIONS
Name expanded (based on a comment of Rick L. Shepherd) by Charles R Greathouse IV, Sep 16 2015
STATUS
approved
Numbers with 4 divisors.
+10
40
6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
OFFSET
1,1
COMMENTS
Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022
REFERENCES
Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.
FORMULA
{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009
MATHEMATICA
Select[Range[200], DivisorSigma[0, #]==4&] (* Harvey P. Dale, Apr 06 2011 *)
PROG
(PARI) is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
(Magma) [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
(Python)
from math import isqrt
from sympy import primepi, integer_nthroot, primerange
def A030513(n):
def f(x): return int(n+x-primepi(integer_nthroot(x, 3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 16 2024
CROSSREFS
Equals the disjoint union of A006881 and A030078.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010
STATUS
approved
Numbers k such that k, k+1 and k+2 are products of two primes.
+10
31
33, 85, 93, 121, 141, 201, 213, 217, 301, 393, 445, 633, 697, 841, 921, 1041, 1137, 1261, 1345, 1401, 1641, 1761, 1837, 1893, 1941, 1981, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2721, 2733, 3097, 3385, 3601, 3693, 3865, 3901, 3957, 4285
OFFSET
1,1
COMMENTS
Each term is the beginning of a run of three 2-almost primes (semiprimes). No runs exist of length greater than three. For the same reason, each term must be odd: If k were even, then so would be k+2. In fact, one of k or k+2 would be divisible by 4, so must indeed be 4 to have only two prime factors. However, neither 2,3,4 nor 4,5,6 is such a run. - Rick L. Shepherd, May 27 2002
k+1, which is twice a prime, is in A086005. The primes are in A086006. - T. D. Noe, May 31 2006
The squarefree terms are listed in A039833. - Jianing Song, Nov 30 2021
LINKS
FORMULA
a(n) = A086005(n) - 1 = 2*A086006(n) - 1 = 4*A123255(n) + 1. - Jianing Song, Nov 30 2021
EXAMPLE
121 is in the sequence because 121 = 11^2, 122 = 2*61 and 123 = 3*41, each of which is the product of two primes.
MATHEMATICA
f[n_] := Plus @@ Transpose[ FactorInteger[n]] [[2]]; Select[Range[10^4], f[ # ] == f[ # + 1] == f[ # + 2] == 2 & ]
Flatten[Position[Partition[PrimeOmega[Range[5000]], 3, 1], {2, 2, 2}]] (* Harvey P. Dale, Feb 15 2015 *)
SequencePosition[PrimeOmega[Range[5000]], {2, 2, 2}][[;; , 1]] (* Harvey P. Dale, Mar 03 2024 *)
PROG
(PARI) forstep(n=1, 5000, 2, if(bigomega(n)==2 && bigomega(n+1)==2 && bigomega(n+2)==2, print1(n, ", ")))
(PARI) is(n)=n%4==1 && isprime((n+1)/2) && bigomega(n)==2 && bigomega(n+2)==2 \\ Charles R Greathouse IV, Sep 08 2015
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim+1)\2, if(bigomega(t=2*p-1)==2 && bigomega(t+2)==2, listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Sep 08 2015
CROSSREFS
Intersection of A070552 and A092207.
KEYWORD
nonn
AUTHOR
Sharon Sela (sharonsela(AT)hotmail.com), May 04 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, May 04 2002
STATUS
approved
Numbers n such that n-1, n and n+1 are all squarefree semiprimes.
+10
9
34, 86, 94, 142, 202, 214, 218, 302, 394, 446, 634, 698, 922, 1042, 1138, 1262, 1346, 1402, 1642, 1762, 1838, 1894, 1942, 1982, 2102, 2182, 2218, 2306, 2362, 2434, 2462, 2518, 2642, 2722, 2734, 3098, 3386, 3602, 3694, 3866, 3902, 3958, 4286, 4414
OFFSET
1,1
COMMENTS
A subsequence of A169834. - M. F. Hasler, Oct 26 2014
LINKS
Wikipedia, Semiprime
FORMULA
a(n) = A039833(n) + 1. - Michel Marcus, Oct 25 2014
a(n) = 2 * A195685(n). - Torlach Rush, Jun 25 2021
EXAMPLE
33, 34 and 35 factor as 3*11, 2*17 and 5*7, respectively. No smaller such trio exists, so a(1)=34.
MATHEMATICA
lst={}; Do[z=n^3 + 3 n^2 + 2 n; If[PrimeOmega[z/n]==PrimeOmega[z/(n + 2)]==4 && PrimeNu[z]==6, AppendTo[lst, n + 1]], {n, 1, 6000, 2}]; lst (* Vincenzo Librandi, Jul 24 2015 *)
SequencePosition[Table[If[SquareFreeQ[n]&&PrimeOmega[n]==2, 1, 0], {n, 4500}], {1, 1, 1}][[All, 1]]+1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 11 2018 *)
PROG
(PARI) sq(n)=bigomega(n)==2 && omega(n)==2;
for(n=3, 10^4, if(sq(n-1)&&sq(n)&&sq(n+1), print1(n, ", ")));
\\ Joerg Arndt, Oct 18 2014
KEYWORD
nonn
AUTHOR
James G. Merickel, Oct 03 2014
STATUS
approved
Numbers k such that k and k+1 both have 4 divisors.
+10
8
14, 21, 26, 33, 34, 38, 57, 85, 86, 93, 94, 118, 122, 133, 141, 142, 145, 158, 177, 201, 202, 205, 213, 214, 217, 218, 253, 298, 301, 302, 326, 334, 381, 393, 394, 445, 446, 453, 481, 501, 514, 526, 537, 542, 553, 565, 622, 633, 634, 694, 697, 698, 706, 717, 745, 766, 778, 793, 802, 817
OFFSET
1,1
REFERENCES
David Wells, Curious and interesting numbers, Penguin Books, 1986, p. 91.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi)
EXAMPLE
14 and 15 both have 4 as number of divisors and are consecutive.
MATHEMATICA
Flatten[Position[Partition[Table[DivisorSigma[0, n], {n, 1000}], 2, 1], _?(#=={4, 4}&)]] (* Vincenzo Librandi, Oct 21 2012 *)
PROG
(PARI) isA039832(n) = numdiv(n)==4 && numdiv(n+1)==4 \\ Michael B. Porter, Feb 03 2010
CROSSREFS
Intersection of A005237 and A030513.
KEYWORD
nonn
STATUS
approved
Start of the least triple of consecutive squarefree numbers each of which has exactly n distinct prime factors.
+10
8
2, 33, 1309, 27962, 3323705, 296602730, 41704979953
OFFSET
1,1
COMMENTS
As the example of a(4)=27962 shows, "consecutive squarefree numbers" means consecutive elements of A005117, not necessarily consecutive integers that (additionally) are squarefree; this would be a more restrictive condition.
a(8) <= 102099792179229 because A093550 - 1 is an upper bound of the present sequence.
EXAMPLE
The two squarefree numbers following a(4)=27962, namely, 27965 and 27966, also have 4 prime divisors just as a(4).
CROSSREFS
See A242605-A242608 for triples of consecutive squarefree numbers with m=2,..,5 prime factors.
See A246470 for the quadruplet and A246548 for the 5-tuple versions of this sequence.
See A039833, A066509, A176167 and A192203 for triples of consecutive numbers which are squarefree and have m=2,..,5 prime factors.
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 18 2014
EXTENSIONS
Edited and a(6)-a(7) added by Hans Havermann, Aug 27 2014
STATUS
approved
n-3, n-2, n-1, n+1, n+2 and n+3 are squarefree.
+10
7
4, 32, 36, 40, 68, 104, 108, 112, 140, 180, 184, 212, 216, 220, 256, 284, 320, 356, 392, 396, 400, 432, 436, 464, 468, 500, 544, 612, 616, 644, 680, 716, 756, 760, 788, 792, 796, 860, 896, 900, 904, 936, 940, 968, 1004, 1008, 1040, 1044, 1112, 1116, 1120, 1156, 1188, 1192, 1220, 1256, 1260, 1264
OFFSET
1,1
COMMENTS
No four consecutive numbers can all be squarefree, as one of them is divisible by 2^2 = 4.
From 28 to 44 there are 12 squarefree numbers among 15 consecutive integers. Other examples are 100 to 116 and 212 to 228.
The largest possible run of consecutive multiples of 4 in the sequence is 3: If n, n+4 and n+8 are in the sequence then n+4 and hence n-5 and n+13 must be divisible by 9, so neither n-4 nor n+12 can be in the sequence. - Ulrich Schimke, Apr 13 2002
LINKS
EXAMPLE
36 is a term as 33,34,35 and 37,38,39 are two sets of three consecutive squarefree numbers.
MAPLE
select(t -> andmap(numtheory:-issqrfree, [t-3, t-2, t-1, t+1, t+2, t+3]), [seq(i, i=4..2000, 4)]); # Robert Israel, Jun 05 2018
MATHEMATICA
<< NumberTheory`NumberTheoryFunctions` lst={}; Do[If[SquareFreeQ[n-1]&&SquareFreeQ[n+1]&&SquareFreeQ[n-2]&&SquareFreeQ[n+2]&&SquareFreeQ[n-3]&&SquareFreeQ[n+3], AppendTo[lst, n]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 26 2009 *)
CROSSREFS
Cf. A007675, A039833. Equals 4*A283628.
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Feb 18 2002
EXTENSIONS
Corrected and extended by Ulrich Schimke, Apr 13 2002
Further correction from Harvey P. Dale, May 01 2002
Offset changed to 1 by Michel Marcus, May 24 2014
STATUS
approved
Numbers k such that k, k+1, and k+2 are each the product of exactly 5 distinct primes.
+10
7
16467033, 18185869, 21134553, 21374353, 21871365, 22247553, 22412533, 22721585, 24845313, 25118093, 25228929, 25345333, 25596933, 26217245, 27140113, 29218629, 29752345, 30323733, 30563245, 31943065, 32663265, 33367893, 36055045, 38269021, 39738061, 40547065
OFFSET
1,1
COMMENTS
Numbers k such that k, k+1, and k+2 are all members of A046387. - N. J. A. Sloane, Jul 17 2024
A subsequence of A242608 intersect A016813. - M. F. Hasler, May 19 2014
All terms are congruent to 1 mod 4. - Zak Seidov, Dec 22 2014
EXAMPLE
a(1)=16467033 because it is the product of 5 distinct primes (3,11,17,149,197), and so are a(1)+1: 16467034 (2,19,23,83,227), and a(1)+2: 16467035 (5,13,37,41,167).
MATHEMATICA
SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==5, 1, 0], {n, 164*10^5, 406*10^5}], {1, 1, 1}][[;; , 1]]+164*10^5-1 (* Harvey P. Dale, Jul 17 2024 *)
PROG
(PARI) forstep(n=1+10^7, 1e8, 4, for(k=n, n+2, issquarefree(k)||next(2)); for(k=n, n+2, omega(k)==5||next(2)); print1((n)", ")) \\ M. F. Hasler, May 19 2014
CROSSREFS
Cf. A046387, A140079. Subsequence of A318964 and of A364266.
KEYWORD
nonn
AUTHOR
Gil Broussard, Jun 25 2011
STATUS
approved
Nonsquare numbers k such that k and k+1 are semiprimes.
+10
7
14, 21, 33, 34, 38, 57, 85, 86, 93, 94, 118, 122, 133, 141, 142, 145, 158, 177, 201, 202, 205, 213, 214, 217, 218, 253, 298, 301, 302, 326, 334, 381, 393, 394, 445, 446, 453, 481, 501, 514, 526, 537, 542, 553, 565, 622, 633, 634, 694, 697, 698, 706, 717, 745, 766, 778, 793, 802, 817, 842, 865, 878
OFFSET
1,1
COMMENTS
If k and k+1 are semiprimes then k+1 is always nonsquare while k can be a square (see A263951). The sequence gives the nonsquare terms of A070552. Each of the numbers k and k+1 is a product of two distinct primes.
Numbers that are terms in A070552 but not in A263951.
The subsequence of triples of consecutive squarefree semiprimes is A039833. - R. J. Mathar, Aug 13 2019
LINKS
MATHEMATICA
Select[Range[1000], ! IntegerQ[Sqrt[#]] && 2 == PrimeOmega[#] == PrimeOmega[# + 1] &]
PROG
(PARI) is(n)=if(n%2, isprime((n+1)/2) && bigomega(n)==2 && !isprimepower(n), isprime(n/2) && bigomega(n+1)==2) \\ Charles R Greathouse IV, Apr 25 2016
CROSSREFS
Subsequence of A070552, A086263.
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 31 2015
STATUS
approved
First of a triple of consecutive integers, each the product of 4 distinct primes.
+10
6
203433, 214489, 225069, 258013, 294593, 313053, 315721, 352885, 389389, 409353, 418845, 421629, 452353, 464385, 478905, 485133, 500905, 508045, 508989, 526029, 528409, 538745, 542269, 542793, 548301, 556869, 559689, 569065, 571233, 579885
OFFSET
1,1
COMMENTS
A subsequence of A242607 and A016813. - M. F. Hasler, May 19 2014
EXAMPLE
203433 is a term: 203433 = 3*19*43*83, 203434 = 2*7*11*1321, 203435 = 5*23*29*61.
MATHEMATICA
f1[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1}; f2[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[If[f1[n]&&f1[n+1]&&f1[n+2], AppendTo[lst, n]], {n, 5*8!, 7*9!}]; lst
PROG
(PARI) forstep(n=1+10^5, 10^7, 4, for(k=n, n+2, issquarefree(k)||next(2)); for(k=n, n+2, omega(k)==4||next(2)); print1((n)", ")) \\ M. F. Hasler, May 19 2014
CROSSREFS
Cf. A039833, A066509, A192203. Subsequence of A140078 and of A318896.
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.021 seconds