[go: up one dir, main page]

login
Search: a039833 -id:a039833
     Sort: relevance | references | number | modified | created      Format: long | short | data
Squarefree semiprimes: Numbers that are the product of two distinct primes.
(Formerly M4082)
+0
471
6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205
OFFSET
1,1
COMMENTS
Numbers k such that phi(k) + sigma(k) = 2*(k+1). - Benoit Cloitre, Mar 02 2002
Numbers k such that tau(k) = omega(k)^omega(k). - Benoit Cloitre, Sep 10 2002 [This comment is false. If k = 900 then tau(k) = omega(k)^omega(k) = 27 but 900 = (2*3*5)^2 is not the product of two distinct primes. - Peter Luschny, Jul 12 2023]
Could also be called 2-almost primes. - Rick L. Shepherd, May 11 2003
From the Goldston et al. reference's abstract: "lim inf [as n approaches infinity] [(a(n+1) - a(n))] <= 26. If an appropriate generalization of the Elliott-Halberstam Conjecture is true, then the above bound can be improved to 6." - Jonathan Vos Post, Jun 20 2005
The maximal number of consecutive integers in this sequence is 3 - there cannot be 4 consecutive integers because one of them would be divisible by 4 and therefore would not be product of distinct primes. There are several examples of 3 consecutive integers in this sequence. The first one is 33 = 3 * 11, 34 = 2 * 17, 35 = 5 * 7; (see A039833). - Matias Saucedo (solomatias(AT)yahoo.com.ar), Mar 15 2008
Number of terms less than or equal to 10^k for k >= 0 is A036351(k). - Robert G. Wilson v, Jun 26 2012
Are these the numbers k whose difference between the sum of proper divisors of k and the arithmetic derivative of k is equal to 1? - Omar E. Pol, Dec 19 2012
Intersection of A001358 and A030513. - Wesley Ivan Hurt, Sep 09 2013
A237114(n) (smallest semiprime k^prime(n)+1) is a term, for n != 2. - Jonathan Sondow, Feb 06 2014
a(n) are the reduced denominators of p_2/p_1 + p_4/p_3, where p_1 != p_2, p_3 != p_4, p_1 != p_3, and the p's are primes. In other words, (p_2*p_3 + p_1*p_4) never shares a common factor with p_1*p_3. - Richard R. Forberg, Mar 04 2015
Conjecture: The sums of two elements of a(n) forms a set that includes all primes greater than or equal to 29 and all integers greater than or equal to 83 (and many below 83). - Richard R. Forberg, Mar 04 2015
The (disjoint) union of this sequence and A001248 is A001358. - Jason Kimberley, Nov 12 2015
A263990 lists the subsequence of a(n) where a(n+1)=1+a(n). - R. J. Mathar, Aug 13 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Zervos, Marie: Sur une classe de nombres composés. Actes du Congrès interbalkanique de mathématiciens 267-268 (1935)
LINKS
D. A. Goldston, S. W. Graham, J. Pimtz and Y. Yildirim, "Small Gaps Between Primes or Almost Primes", arXiv:math/0506067 [math.NT], March 2005.
G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Applications, 24 (1992), 79-99. (Annotated scanned copy)
R. J. Mathar, Series of reciprocal powers of k-almost primes arXiv:0803.0900, table 6 k=2 shows sum 1/a(n)^s.
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
A000005(a(n)^(k-1)) = A000290(k) for all k>0. - Reinhard Zumkeller, Mar 04 2007
A109810(a(n)) = 4; A178254(a(n)) = 6. - Reinhard Zumkeller, May 24 2010
A056595(a(n)) = 3. - Reinhard Zumkeller, Aug 15 2011
a(n) = A096916(n) * A070647(n). - Reinhard Zumkeller, Sep 23 2011
A211110(a(n)) = 3. - Reinhard Zumkeller, Apr 02 2012
Sum_{n >= 1} 1/a(n)^s = (1/2)*(P(s)^2 - P(2*s)), where P is Prime Zeta. - Enrique Pérez Herrero, Jun 24 2012
A050326(a(n)) = 2. - Reinhard Zumkeller, May 03 2013
sopf(a(n)) = a(n) - phi(a(n)) + 1 = sigma(a(n)) - a(n) - 1. - Wesley Ivan Hurt, May 18 2013
d(a(n)) = 4. Omega(a(n)) = 2. omega(a(n)) = 2. mu(a(n)) = 1. - Wesley Ivan Hurt, Jun 28 2013
a(n) ~ n log n/log log n. - Charles R Greathouse IV, Aug 22 2013
A089233(a(n)) = 1. - Reinhard Zumkeller, Sep 04 2013
From Peter Luschny, Jul 12 2023: (Start)
For k > 1: k is term of a <=> k^A001221(k) = k*A007947(k).
For k > 1: k is term of a <=> k^A001222(k) = k*A007947(k).
For k > 1: k is term of a <=> A363923(k) = k. (End)
MAPLE
N:= 1001: # to get all terms < N
Primes:= select(isprime, [2, seq(2*k+1, k=1..floor(N/2))]):
{seq(seq(p*q, q=Primes[1..ListTools:-BinaryPlace(Primes, N/p)]), p=Primes)} minus {seq(p^2, p=Primes)};
# Robert Israel, Jul 23 2014
# Alternative, using A001221:
isA006881 := proc(n)
if numtheory[bigomega](n) =2 and A001221(n) = 2 then
true ;
else
false ;
end if;
end proc:
A006881 := proc(n) if n = 1 then 6; else for a from procname(n-1)+1 do if isA006881(a) then return a; end if; end do: end if;
end proc: # R. J. Mathar, May 02 2010
# Alternative:
with(NumberTheory): isA006881 := n -> is(NumberOfPrimeFactors(n, 'distinct') = 2 and NumberOfPrimeFactors(n) = 2):
select(isA006881, [seq(1..205)]); # Peter Luschny, Jul 12 2023
MATHEMATICA
mx = 205; Sort@ Flatten@ Table[ Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[ mx/Prime[n]]}] (* Robert G. Wilson v, Dec 28 2005, modified Jul 23 2014 *)
sqFrSemiPrimeQ[n_] := Last@# & /@ FactorInteger@ n == {1, 1}; Select[Range[210], sqFrSemiPrimeQ] (* Robert G. Wilson v, Feb 07 2012 *)
With[{upto=250}, Select[Sort[Times@@@Subsets[Prime[Range[upto/2]], {2}]], #<=upto&]] (* Harvey P. Dale, Apr 30 2018 *)
PROG
(PARI) for(n=1, 214, if(bigomega(n)==2&&omega(n)==2, print1(n, ", ")))
(PARI) for(n=1, 214, if(bigomega(n)==2&&issquarefree(n), print1(n, ", ")))
(PARI) list(lim)=my(v=List()); forprime(p=2, sqrt(lim), forprime(q=p+1, lim\p, listput(v, p*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
(Haskell)
a006881 n = a006881_list !! (n-1)
a006881_list = filter chi [1..] where
chi n = p /= q && a010051 q == 1 where
p = a020639 n
q = n `div` p
-- Reinhard Zumkeller, Aug 07 2011
(Sage)
def A006881_list(n) :
R = []
for i in (6..n) :
d = prime_divisors(i)
if len(d) == 2 :
if d[0]*d[1] == i :
R.append(i)
return R
A006881_list(205) # Peter Luschny, Feb 07 2012
(Magma) [n: n in [1..210] | EulerPhi(n) + DivisorSigma(1, n) eq 2*(n+1)]; // Vincenzo Librandi, Sep 17 2015
(Python)
from sympy import factorint
def ok(n): f=factorint(n); return len(f) == 2 and sum(f[p] for p in f) == 2
print(list(filter(ok, range(1, 206)))) # Michael S. Branicky, Jun 10 2021
(Python)
from math import isqrt
from sympy import primepi, primerange
def A006881(n):
def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 15 2024
CROSSREFS
Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A030229, A051709, A001221 (omega(n)), A001222 (bigomega(n)), A001358 (semiprimes), A005117 (squarefree), A007304 (squarefree 3-almost primes), A213952, A039833, A016105 (subsequences), A237114 (subsequence, n != 2).
Subsequence of A007422.
Cf. A259758 (subsequence), A036351, A363923.
KEYWORD
nonn,easy,nice
EXTENSIONS
Name expanded (based on a comment of Rick L. Shepherd) by Charles R Greathouse IV, Sep 16 2015
STATUS
approved
Numbers with 4 divisors.
+0
40
6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
OFFSET
1,1
COMMENTS
Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022
REFERENCES
Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.
FORMULA
{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009
MATHEMATICA
Select[Range[200], DivisorSigma[0, #]==4&] (* Harvey P. Dale, Apr 06 2011 *)
PROG
(PARI) is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
(Magma) [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
(Python)
from math import isqrt
from sympy import primepi, integer_nthroot, primerange
def A030513(n):
def f(x): return int(n+x-primepi(integer_nthroot(x, 3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 16 2024
CROSSREFS
Equals the disjoint union of A006881 and A030078.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010
STATUS
approved
Numbers k such that k, k+1, and k+2 are each the product of exactly 5 distinct primes.
+0
7
16467033, 18185869, 21134553, 21374353, 21871365, 22247553, 22412533, 22721585, 24845313, 25118093, 25228929, 25345333, 25596933, 26217245, 27140113, 29218629, 29752345, 30323733, 30563245, 31943065, 32663265, 33367893, 36055045, 38269021, 39738061, 40547065
OFFSET
1,1
COMMENTS
Numbers k such that k, k+1, and k+2 are all members of A046387. - N. J. A. Sloane, Jul 17 2024
A subsequence of A242608 intersect A016813. - M. F. Hasler, May 19 2014
All terms are congruent to 1 mod 4. - Zak Seidov, Dec 22 2014
EXAMPLE
a(1)=16467033 because it is the product of 5 distinct primes (3,11,17,149,197), and so are a(1)+1: 16467034 (2,19,23,83,227), and a(1)+2: 16467035 (5,13,37,41,167).
MATHEMATICA
SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==5, 1, 0], {n, 164*10^5, 406*10^5}], {1, 1, 1}][[;; , 1]]+164*10^5-1 (* Harvey P. Dale, Jul 17 2024 *)
PROG
(PARI) forstep(n=1+10^7, 1e8, 4, for(k=n, n+2, issquarefree(k)||next(2)); for(k=n, n+2, omega(k)==5||next(2)); print1((n)", ")) \\ M. F. Hasler, May 19 2014
CROSSREFS
Cf. A046387, A140079. Subsequence of A318964 and of A364266.
KEYWORD
nonn
AUTHOR
Gil Broussard, Jun 25 2011
STATUS
approved
Numbers k such that k, k+1 and k+2 are products of two primes.
+0
31
33, 85, 93, 121, 141, 201, 213, 217, 301, 393, 445, 633, 697, 841, 921, 1041, 1137, 1261, 1345, 1401, 1641, 1761, 1837, 1893, 1941, 1981, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2721, 2733, 3097, 3385, 3601, 3693, 3865, 3901, 3957, 4285
OFFSET
1,1
COMMENTS
Each term is the beginning of a run of three 2-almost primes (semiprimes). No runs exist of length greater than three. For the same reason, each term must be odd: If k were even, then so would be k+2. In fact, one of k or k+2 would be divisible by 4, so must indeed be 4 to have only two prime factors. However, neither 2,3,4 nor 4,5,6 is such a run. - Rick L. Shepherd, May 27 2002
k+1, which is twice a prime, is in A086005. The primes are in A086006. - T. D. Noe, May 31 2006
The squarefree terms are listed in A039833. - Jianing Song, Nov 30 2021
LINKS
FORMULA
a(n) = A086005(n) - 1 = 2*A086006(n) - 1 = 4*A123255(n) + 1. - Jianing Song, Nov 30 2021
EXAMPLE
121 is in the sequence because 121 = 11^2, 122 = 2*61 and 123 = 3*41, each of which is the product of two primes.
MATHEMATICA
f[n_] := Plus @@ Transpose[ FactorInteger[n]] [[2]]; Select[Range[10^4], f[ # ] == f[ # + 1] == f[ # + 2] == 2 & ]
Flatten[Position[Partition[PrimeOmega[Range[5000]], 3, 1], {2, 2, 2}]] (* Harvey P. Dale, Feb 15 2015 *)
SequencePosition[PrimeOmega[Range[5000]], {2, 2, 2}][[;; , 1]] (* Harvey P. Dale, Mar 03 2024 *)
PROG
(PARI) forstep(n=1, 5000, 2, if(bigomega(n)==2 && bigomega(n+1)==2 && bigomega(n+2)==2, print1(n, ", ")))
(PARI) is(n)=n%4==1 && isprime((n+1)/2) && bigomega(n)==2 && bigomega(n+2)==2 \\ Charles R Greathouse IV, Sep 08 2015
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim+1)\2, if(bigomega(t=2*p-1)==2 && bigomega(t+2)==2, listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Sep 08 2015
CROSSREFS
Intersection of A070552 and A092207.
KEYWORD
nonn
AUTHOR
Sharon Sela (sharonsela(AT)hotmail.com), May 04 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, May 04 2002
STATUS
approved
First of a triple of consecutive integers, each the product of 4 distinct primes.
+0
6
203433, 214489, 225069, 258013, 294593, 313053, 315721, 352885, 389389, 409353, 418845, 421629, 452353, 464385, 478905, 485133, 500905, 508045, 508989, 526029, 528409, 538745, 542269, 542793, 548301, 556869, 559689, 569065, 571233, 579885
OFFSET
1,1
COMMENTS
A subsequence of A242607 and A016813. - M. F. Hasler, May 19 2014
EXAMPLE
203433 is a term: 203433 = 3*19*43*83, 203434 = 2*7*11*1321, 203435 = 5*23*29*61.
MATHEMATICA
f1[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1}; f2[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[If[f1[n]&&f1[n+1]&&f1[n+2], AppendTo[lst, n]], {n, 5*8!, 7*9!}]; lst
PROG
(PARI) forstep(n=1+10^5, 10^7, 4, for(k=n, n+2, issquarefree(k)||next(2)); for(k=n, n+2, omega(k)==4||next(2)); print1((n)", ")) \\ M. F. Hasler, May 19 2014
CROSSREFS
Cf. A039833, A066509, A192203. Subsequence of A140078 and of A318896.
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers k such that k, k+1 and k+2 have the same ordered prime signature.
+0
2
33, 85, 93, 141, 201, 213, 217, 301, 393, 445, 633, 697, 921, 1041, 1137, 1261, 1309, 1345, 1401, 1641, 1761, 1837, 1885, 1893, 1941, 1981, 2013, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2665, 2721, 2733, 3097, 3385, 3601, 3693, 3729, 3865, 3901, 3957
OFFSET
1,1
COMMENTS
First differs from its subsequence A039833 at n = 17, and from its subsequence A075039 at n = 53.
The ordered prime signature of a number n is the list of exponents of the distinct prime factors in the prime factorization of n, in the order of the prime factors (A124010).
Can 4 consecutive integers have the same ordered prime signature? There are no such quadruples below 10^9.
The answer to the question above is no. Two out of every four consecutive numbers are even and their powers of 2 are different. - Ivan N. Ianakiev, Jan 13 2023
LINKS
EXAMPLE
33 is a term since 33 = 3^1 * 11^1, 34 = 2^1 * 17^1, and 35 = 5^1 * 7^1 have the same ordered prime signature, (1, 1).
4923 is a term since 4923 = 3^2 * 547^1, 4924 = 2^2 * 1231^1, and 4925 = 5^2 * 197^1 have the same ordered prime signature, (2, 1).
603 is a term of A052214 but not a term of this sequence, since 603 = 3^2 * 67^1, 604 = 2^2 * 151^1, and 605 = 5^1 * 11^2 have different ordered prime signatures, (2, 1) or (1, 2).
MATHEMATICA
q[n_] := SameQ @@ (FactorInteger[#][[;; , 2]]& /@ (n + {0, 1, 2})); Select[Range[2, 4000], q]
PROG
(PARI) lista(nmax) = {my(e1 = [], e2 = factor(2)[, 2]); for(n = 3, nmax, e3 = factor(n)[, 2]; if(e1 == e2 && e2 == e3, print1(n-2, ", ")); e1 = e2; e2 = e3); }
CROSSREFS
Subsequence of A052214 and A359745.
Subsequences: A039833, A075039.
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jan 13 2023
STATUS
approved
Start of the least triple of consecutive squarefree numbers each of which has exactly n distinct prime factors.
+0
8
2, 33, 1309, 27962, 3323705, 296602730, 41704979953
OFFSET
1,1
COMMENTS
As the example of a(4)=27962 shows, "consecutive squarefree numbers" means consecutive elements of A005117, not necessarily consecutive integers that (additionally) are squarefree; this would be a more restrictive condition.
a(8) <= 102099792179229 because A093550 - 1 is an upper bound of the present sequence.
EXAMPLE
The two squarefree numbers following a(4)=27962, namely, 27965 and 27966, also have 4 prime divisors just as a(4).
CROSSREFS
See A242605-A242608 for triples of consecutive squarefree numbers with m=2,..,5 prime factors.
See A246470 for the quadruplet and A246548 for the 5-tuple versions of this sequence.
See A039833, A066509, A176167 and A192203 for triples of consecutive numbers which are squarefree and have m=2,..,5 prime factors.
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 18 2014
EXTENSIONS
Edited and a(6)-a(7) added by Hans Havermann, Aug 27 2014
STATUS
approved
Primes p for which tau(2p-1) = tau(2p+1) = 4.
+0
4
17, 43, 47, 71, 101, 107, 109, 151, 197, 223, 317, 349, 461, 521, 569, 631, 673, 701, 821, 881, 919, 947, 971, 991, 1051, 1091, 1109, 1153, 1181, 1217, 1231, 1259, 1321, 1361, 1367, 1549, 1693, 1801, 1847, 1933, 1951, 1979, 2143, 2207, 2267, 2297, 2441, 2801
OFFSET
1,1
COMMENTS
Sequence terms are a subset of those listed in A086006 and A068497.
The numbers 2p-1, 2p, 2p+1 form a run (indeed, a maximal run) of three consecutive integers each with four positive divisors. The first two examples are 33, 34, 35 and 85, 86, 87. A039833 gives the first number in these maximal 3-integer runs. - Timothy L. Tiffin, Jul 05 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A248201(n)/2. - Torlach Rush, Jun 25 2021
EXAMPLE
tau(2*17-1) = tau(33) = tau(3*11) = 4 = tau(5*7) = tau(35) = tau(2*17+1) and tau(2*43-1) = tau(85) = tau(5*17) = 4 = tau(3*29) = tau(87) = tau(2*43+1). - Timothy L. Tiffin, Jul 05 2016
MAPLE
with(numtheory):
q:= p-> isprime(p) and tau(2*p-1)=4 and tau(2*p+1)=4:
select(q, [$1..3000])[]; # Alois P. Heinz, Apr 18 2019
MATHEMATICA
Select[Prime[Range[500]], DivisorSigma[0, 2 # - 1] == DivisorSigma[0, 2 # + 1] == 4 &] (* T. D. Noe, Sep 22 2011 *)
Select[Mean[#]/2&/@SequencePosition[DivisorSigma[0, Range[6000]], {4, _, 4}], PrimeQ] (* Harvey P. Dale, Nov 26 2021 *)
PROG
(PARI) lista(nn) = forprime(p=2, nn, if ((numdiv(2*p-1) == 4) && (numdiv(2*p+1) == 4), print1(p, ", "))); \\ Michel Marcus, Jul 06 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Timothy L. Tiffin, Sep 22 2011
STATUS
approved
Numbers n such that n-1, n and n+1 are all squarefree semiprimes.
+0
9
34, 86, 94, 142, 202, 214, 218, 302, 394, 446, 634, 698, 922, 1042, 1138, 1262, 1346, 1402, 1642, 1762, 1838, 1894, 1942, 1982, 2102, 2182, 2218, 2306, 2362, 2434, 2462, 2518, 2642, 2722, 2734, 3098, 3386, 3602, 3694, 3866, 3902, 3958, 4286, 4414
OFFSET
1,1
COMMENTS
A subsequence of A169834. - M. F. Hasler, Oct 26 2014
LINKS
Wikipedia, Semiprime
FORMULA
a(n) = A039833(n) + 1. - Michel Marcus, Oct 25 2014
a(n) = 2 * A195685(n). - Torlach Rush, Jun 25 2021
EXAMPLE
33, 34 and 35 factor as 3*11, 2*17 and 5*7, respectively. No smaller such trio exists, so a(1)=34.
MATHEMATICA
lst={}; Do[z=n^3 + 3 n^2 + 2 n; If[PrimeOmega[z/n]==PrimeOmega[z/(n + 2)]==4 && PrimeNu[z]==6, AppendTo[lst, n + 1]], {n, 1, 6000, 2}]; lst (* Vincenzo Librandi, Jul 24 2015 *)
SequencePosition[Table[If[SquareFreeQ[n]&&PrimeOmega[n]==2, 1, 0], {n, 4500}], {1, 1, 1}][[All, 1]]+1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 11 2018 *)
PROG
(PARI) sq(n)=bigomega(n)==2 && omega(n)==2;
for(n=3, 10^4, if(sq(n-1)&&sq(n)&&sq(n+1), print1(n, ", ")));
\\ Joerg Arndt, Oct 18 2014
KEYWORD
nonn
AUTHOR
James G. Merickel, Oct 03 2014
STATUS
approved
Integers k such that each of k, k+1, k+2, k+4, k+5, k+6 is the product of two distinct primes.
+0
6
213, 143097, 194757, 206133, 273417, 684897, 807657, 1373937, 1391757, 1516533, 1591593, 1610997, 1774797, 1882977, 1891761, 2046453, 2051493, 2163417, 2163957, 2338053, 2359977, 2522517, 2913837, 3108201, 4221753
OFFSET
1,1
COMMENTS
A remarkable gap occurs between the initial two members, and the sequence seems to be rather sparse compared to the related A242805.
Here, the first member k of the sextet is the reference, whereas in A068088 the center k+3 is selected as reference. Observe that k+3 must be divisible by the square 4.
All terms are congruent to 9 (mod 12). - Zak Seidov, Apr 14 2015
From Robert Israel, Apr 15 2015: (Start)
All terms are congruent to 33 (mod 36).
Numbers k in A039833 such that k+4 is in A039833. (End)
From Robert G. Wilson v, Apr 15 2015: (Start)
k is congruent to 33 (mod 36) so one of its factors is 3 and the other is == 11 (mod 12);
k+1 is congruent to 34 (mod 36) so one of its factors is 2 and the other is == 17 (mod 18);
k+2 is congruent to 35 (mod 36) so its factors are == +-1 (mod 6);
k+4 is congruent to 1 (mod 36) so its factors are == +-1 (mod 6);
k+5 is congruent to 2 (mod 36) so one of its factors is 2 and the other is == 1 (mod 18);
k+6 is congruent to 3 (mod 36) so one of its factors is 3 and the other is == 1 (mod 12). (End).
Number of terms < 10^m: 0, 0, 1, 1, 1, 7, 39, 169, 882, 4852, 27479, ...,. - Robert G. Wilson v, Apr 15 2015
Or, numbers k such that k, k+1 and k+2 are terms in A175648. - Zak Seidov, Dec 08 2015
LINKS
Zak Seidov and Robert G. Wilson v, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A202319(n) - 1. - Jon Maiga, Jul 10 2021
EXAMPLE
213=3*71, 214=2*107, 215=5*43, 217=7*31, 218=2*109, 219=3*73.
MAPLE
f:= t -> numtheory:-issqrfree(t) and (numtheory:-bigomega(t) = 2):
select(t -> andmap(f, [t, t+1, t+2, t+4, t+5, t+6]), [seq(36*k+33, k=0..10^6)]); # Robert Israel, Apr 15 2015
MATHEMATICA
fQ[n_] := PrimeQ[n/3] && PrimeQ[(n + 1)/2] && PrimeQ[(n + 5)/2] && PrimeQ[(n + 6)/3] && PrimeNu[{n + 2, n + 4}] == {2, 2} == PrimeOmega[{n + 2, n + 4}]; k = 33; lst = {}; While[k < 10^8, If[fQ@ k, AppendTo[lst, k]]; k += 36]; lst (* Robert G. Wilson v, Apr 14 2015 and revised Apr 15 2015 after Zak Seidov and Robert Israel *)
PROG
(PARI) default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=2; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1<n, loc=1; i=n; ); ); if(3==loc, if(j+1==n, k=n; ); if(j+1<n, loc=1; i=n; ); ); if(4==loc, if(k+2==n, l=n; ); if(k+2<n, loc=1; i=n; ); ); if(5==loc, if(l+1==n, m=n; ); if(l+1<n, loc=1; i=n; ); ); if(6==loc, if(m+1==n, print1(i, ", "); loc=0; ); if(m+1<n, loc=1; i=n))))
(PARI) forstep(x=213, 4221753, 12, if( isprime(x/3) && isprime((x+1)/2) && 2==omega(x+2) && 2==bigomega(x+2) && 2==omega(x+4) && 2==bigomega(x+4) && isprime((x+5)/2) && isprime((x+6)/3), print1(x", "))) \\ Zak Seidov, Apr 14 2015
CROSSREFS
Cf. A242793 (minima for two, three and more prime divisors) and A068088 (arbitrary squarefree integers).
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.013 seconds