[go: up one dir, main page]

login
A096916
Lesser prime factor of n-th product of two distinct primes.
14
2, 2, 2, 3, 3, 2, 2, 3, 2, 5, 2, 3, 2, 3, 5, 3, 2, 2, 5, 3, 2, 7, 2, 5, 2, 3, 7, 3, 2, 5, 2, 3, 5, 2, 7, 2, 3, 3, 7, 2, 3, 2, 11, 5, 2, 5, 2, 3, 7, 2, 3, 2, 3, 5, 11, 2, 3, 2, 7, 5, 2, 11, 3, 2, 5, 7, 2, 3, 13, 2, 5, 3, 13, 3, 11, 2, 7, 2, 5, 3, 2, 2, 7, 3, 5, 2, 13, 7, 2, 3, 5, 3, 2, 11, 3, 17, 2, 3
OFFSET
1,1
COMMENTS
a(n)*A070647(n) = A006881(n); a(n) < A070647(n);
a(n) = A020639(A006881(n)).
LINKS
MATHEMATICA
f[n_]:=Last/@FactorInteger[n]=={1, 1}; f1[n_]:=Min[First/@FactorInteger[n]]; f2[n_]:=Max[First/@FactorInteger[n]]; lst={}; Do[If[f[n], AppendTo[lst, f1[n]]], {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Apr 10 2010 *)
PROG
(Haskell)
a096916 = a020639 . a006881 -- Reinhard Zumkeller, Sep 23 2011
(PARI) go(x)=my(v=List()); forprime(p=2, sqrtint(x\1), forprime(q=p+1, x\p, listput(v, [p*q, p]))); apply(v->v[2], vecsort(Vec(v), 1)) \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
Sequence in context: A124064 A348470 A317369 * A098014 A059957 A361088
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Jul 15 2004
STATUS
approved