[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a001300 -id:a001300
Displaying 1-9 of 9 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A001299 Number of ways of making change for n cents using coins of 1, 5, 10, 25 cents. +10
19
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 49, 49, 49, 49, 49, 60, 60, 60, 60, 60, 73, 73, 73, 73, 73, 87, 87, 87, 87, 87, 103, 103, 103, 103, 103 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
a(n) = A001300(n) = A169718(n) for n < 50. - Reinhard Zumkeller, Dec 15 2013
Number of partitions of n into parts 1, 5, 10, and 25. - Joerg Arndt, Sep 05 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
LINKS
Gerhard Kirchner, Derivation of formulas
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1).
FORMULA
G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)).
a(n) = round((100*x^3 + 135*x^2 +53*x)/6) + 1 with x= floor(n/5)/10. See link "Derivation of formulas". - Gerhard Kirchner, Feb 23 2017
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 2*x^9 + 4*x^10 + ...
MATHEMATICA
CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)(1 - x^25)), {x, 0, 65} ], x ]
Table[Length[FrobeniusSolve[{1, 5, 10, 25}, n]], {n, 0, 80}] (* Harvey P. Dale, Dec 01 2015 *)
a[ n_] := With[ {m = Quotient[n, 5] / 10}, Round[ (4 m + 3) (5 m + 1) (5 m + 2) / 6]]; (* Michael Somos, Feb 23 2017 *)
PROG
(Haskell)
a001299 = p [1, 5, 10, 25] where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Dec 15 2013
(PARI) a(n)=floor((n\5+1)*((n\5+2)*(2-n%5)/100+[54, 27, -2, -33, -66][n%5+1]/500)+(2-5*(n%5%2))*(-1)^n/40+(2*n^3+123*n^2+2146*n+16290)/15000) \\ Tani Akinari, May 09 2014
(PARI) {a(n) = my(m=n\5 / 10); round((4*m + 3) * (5*m + 1) * (5*m + 2) / 6)}; /* Michael Somos, Feb 23 2017 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 15 1996
STATUS
approved
A000008 Number of ways of making change for n cents using coins of 1, 2, 5, 10 cents.
(Formerly M0280 N0099)
+10
16
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 64, 70, 76, 82, 88, 98, 104, 114, 120, 130, 140, 150, 160, 170, 180, 195, 205, 220, 230, 245, 260, 275, 290, 305, 320, 341, 356, 377, 392, 413, 434, 455, 476, 497, 518, 546 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 5, and 10.
There is a unique solution to this puzzle: "There are a prime number of ways that I can make change for n cents using coins of 1, 2, 5, 10 cents; but a semiprime number of ways that I can make change for n-1 cents and for n+1 cents." There is a unique solution to this related puzzle: "There are a prime number of ways that I can make change for n cents using coins of 1, 2, 5, 10 cents; but a 3-almost prime number of ways that I can make change for n-1 cents and for n+1 cents." - Jonathan Vos Post, Aug 26 2005
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
William Boyles, Table of n, a(n) for n = 0..10000 (terms 0...1000 from T. D. Noe)
X. Gourdon and B. Salvy, Effective asymptotics of linear recurrences with rational coefficients, Discrete Mathematics, vol. 153, no. 1-3, 1996, pages 145-163.
Gerhard Kirchner, Derivation of formulas
Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,1,-1,-1,1,0,1,-1,-1,1,0,-1,1,1,-1).
FORMULA
G.f.: 1 / ((1 - x) * (1 - x^2) * (1 - x^5) * (1 - x^10)). - Michael Somos, Nov 17 1999
a(n) - a(n-1) = A025810(n). - Michael Somos, Dec 15 2002
a(n) = a(n-2) + a(n-5) - a(n-7) + a(n-10) - a(n-12) - a(n-15) + a(n-17) + 1. - Michael Somos, Apr 01 2003
a(n) = -a(-18-n). - Michael Somos, Apr 01 2003
a(n) = (q+1)*(h(n) - q*(3n-10q+7)/6) with q = floor(n/10) and h(n) = A000115(n) = round((n+4)^2/20). See link "Derivation of formulas". - Gerhard Kirchner, Feb 10 2017
EXAMPLE
G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 8*x^9 + 11*x^10 + ...
MAPLE
M:= Matrix(18, (i, j)-> if(i=j-1 and i<17) or (j=1 and member(i, [2, 5, 10, 17, 18])) or (i=18 and j=18) then 1 elif j=1 and member(i, [7, 12, 15]) then -1 else 0 fi); a:= n-> (M^(n+1))[18, 1]; seq(a(n), n=0..51); # Alois P. Heinz, Jul 25 2008
# second Maple program:
a:= proc(n) local m, r; m := iquo(n, 10, 'r'); r:= r+1; ([23, 26, 35, 38, 47, 56, 65, 74, 83, 92][r]+ (3*r+ 24+ 10*m) *m) *m/6+ [1, 1, 2, 2, 3, 4, 5, 6, 7, 8][r] end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 05 2008
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 / ((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)), {x, 0, n}]
a[n_, d_] := SeriesCoefficient[1/(Times@@Map[(1-x^#)&, d]), {x, 0, n}] (* general case for any set of denominations represented as a list d of coin values in cents *)
Table[Length[FrobeniusSolve[{1, 2, 5, 10}, n]], {n, 0, 70}] (* Harvey P. Dale, Apr 02 2012 *)
LinearRecurrence[{1, 1, -1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1}, {1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28}, 100] (* Vincenzo Librandi, Feb 10 2016 *)
a[ n_] := Quotient[ With[{r = Mod[n, 10, 1]}, n^3 + 27 n^2 + (191 + 3 {4, 13, 0, 5, 8, 9, 8, 5, 0, 13}[[r]]) n + 25], 600] + 1; (* Michael Somos, Mar 06 2018 *)
Table[Length@IntegerPartitions[n, All, {1, 2, 5, 10}], {n, 0, 70}] (* Giorgos Kalogeropoulos, May 07 2019 *)
PROG
(PARI) {a(n) = if( n<-17, -a(-18-n), if( n<0, 0, polcoeff( 1 / ((1 - x) * (1 - x^2) * (1 - x^5) * (1 - x^10)) + x * O(x^n), n)))}; /* Michael Somos, Apr 01 2003 */
(PARI) Vec( 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)) + O(x^66) ) \\ Joerg Arndt, Oct 02 2013
(PARI) {a(n) = my(r = (n-1)%10 + 1); (n^3 + 27*n^2 + (191 + 3*[4, 13, 0, 5, 8, 9, 8, 5, 0, 13][r])*n + 25)\600 + 1}; /* Michael Somos, Mar 06 2018 */
(Maxima) a(n):=floor(((n+17)*(2*n^2+20*n+81)+15*(n+1)*(-1)^n+120*((floor(n/5)+1)*((1+(-1)^mod(n, 5))/2-floor(((mod(n, 5))^2)/8))))/1200); /* Tani Akinari, Jun 21 2013 */
(Haskell)
a000008 = p [1, 2, 5, 10] where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Dec 15 2013
(Magma) [#RestrictedPartitions(n, {1, 2, 5, 10}):n in [0..60]]; // Marius A. Burtea, May 07 2019
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A169718 Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 and 100 cents. +10
7
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 50, 50, 50, 50, 50, 62, 62, 62, 62, 62, 77, 77, 77, 77, 77, 93, 93, 93, 93, 93, 112, 112, 112, 112, 112, 134, 134 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
a(n) = A001300(n) for n < 100; a(n) = A001299(n) for n < 50. - Reinhard Zumkeller, Dec 15 2013
Number of partitions of n into parts 1, 5, 10, 25, 50, and 100. - Joerg Arndt, Sep 05 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
LINKS
M. Erickson, Change for a dollar, change for a million, Math. Horizons, Feb 2010, pp. 22-25.
FORMULA
G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)*(1-x^100)).
MATHEMATICA
Table[Length[FrobeniusSolve[{1, 5, 10, 25, 50, 100}, n]], {n, 0, 80}] (* or *) CoefficientList[Series[1/((1-x)(1-x^5)(1-x^10)(1-x^25)(1-x^50)(1-x^100)), {x, 0, 80}], x] (* Harvey P. Dale, Dec 25 2011 *)
PROG
(Haskell)
a169718 = p [1, 5, 10, 25, 50, 100] where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Dec 15 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 20 2010
STATUS
approved
A001302 Number of ways of making change for n cents using coins of 1, 2, 5, 10, 25, 50 cents. +10
6
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 65, 71, 78, 84, 91, 102, 109, 120, 127, 138, 151, 162, 175, 186, 199, 217, 230, 248, 261, 279, 300, 318, 339, 357, 378, 407, 428, 457, 478, 507, 540, 569, 602, 631, 664 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 5, 10, 25, and 50. - Joerg Arndt, Sep 05 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, -1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1).
FORMULA
G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)).
a(n) = Sum_{k=0..floor(n/2)} A001300(n-2*k). - Christian Krause, Apr 24 2021
MATHEMATICA
CoefficientList[ Series[ 1 / ((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)(1 - x^25)(1 - x^50)), {x, 0, 55} ], x ]
Array[Length@IntegerPartitions[#, All, {1, 2, 5, 10, 25, 50}]&, 100, 0] (* Giorgos Kalogeropoulos, Apr 24 2021 *)
PROG
(PARI) Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50))+ O(x^100)) \\ Michel Marcus, Sep 05 2014
KEYWORD
nonn
AUTHOR
STATUS
approved
A187243 Number of ways of making change for n cents using coins of 1, 5, and 10 cents. +10
5
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 12, 12, 12, 12, 12, 16, 16, 16, 16, 16, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 30, 30, 30, 30, 30, 36, 36, 36, 36, 36, 42, 42, 42, 42, 42, 49, 49, 49, 49, 49, 56, 56, 56, 56, 56, 64, 64, 64, 64, 64, 72, 72, 72, 72, 72 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
a(n) is the number of partitions of n into parts 1, 5, and 10. - Joerg Arndt, Feb 02 2017
From Gerhard Kirchner, Jan 25 2017: (Start)
There is a simple recurrence for solving such problems given coin values 1 = c(1) < c(2) < ... < c(k).
Let f(n, j), 1 < j <= k, be the number of ways of making change for n cents with coin values c(i), 1 <= i <= j. Then any number m of c(j)-coins with 0 <= m <= floor(n/c(j)) can be used, and the remaining amount of change to be made using coins of values smaller than c(j) will be n - m*c(j) cents. This leads directly to the recurrence formula with a(n) = f(n, k).
For k = 3 with c(1) = 1, c(2) = 5, c(3) = 10, the recurrence can be reduced to an explicit formula; see link "Derivation of formulas".
By the way, a(n) is also the number of ways of making change for n cents using coins of 2, 5, 10 cents and at most one 1-cent coin. That is because any coin combination is, as in the original problem, fixed by the numbers of 5-cent and 10-cent coins.
(End)
LINKS
Gerhard Kirchner, Derivation of formulas
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1,0,0,0,1,-1,0,0,0,-1,1).
FORMULA
G.f.: 1/((1-x)*(1-x^5)*(1-x^10)).
From Gerhard Kirchner, Jan 25 2017: (Start)
General recurrence: f(n, 1) = 1; j > 1: f(0, j) = 1 or
f(n, j) = Sum_{m=0..floor(n/c(j))} f(n-m*c(j), j-1);
a(n) = f(n, k).
Note: f(n, j) = f(n, j-1) for n < c(j) => f(1, j) = 1.
Explicit formula:
a(n) = (q+1)*(q+1+s) with q = floor(n/10) and s = floor((n mod 10)/5).
(End)
EXAMPLE
From Gerhard Kirchner, Jan 25 2017: (Start)
Recurrence:
a(11) = f(11, 3) = f(11 - 0, 2) + f(11 - 10, 2)
= f(11 - 0, 1) + f(11 - 5, 1) + f(11 - 10, 1) + f(1, 2)
= 1 + 1 + 1 + 1 = 4.
Explicitly: a(79) = (7 + 1)*(7 + 1 + 1) = 72.
(End)
MATHEMATICA
CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)), {x, 0, 75} ], x ]
PROG
(PARI) Vec( 1/((1-x)*(1-x^5)*(1-x^10))+O(x^99)) \\ Charles R Greathouse IV, Aug 22 2011
(PARI) a(n)=(n^2+16*n+97+10*(n\5+1)*(5*(n\5)+2-n))\100 \\ Tani Akinari, Sep 10 2015
(PARI) a(n) = {my(q=n\10, s=(n%10)\5); (q+1)*(q+1+s); } \\ (Kirchner's explicit formula) Joerg Arndt, Feb 02 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, Mar 07 2011
STATUS
approved
A212774 Amounts (in cents) of coins in denominations 1, 5, 10, 25, and 50 (cents) which, when using the minimal number of coins, have equal numbers of all denominations used. +10
4
0, 1, 2, 3, 4, 5, 6, 10, 11, 15, 16, 20, 22, 25, 26, 30, 31, 35, 36, 40, 41, 50, 51, 55, 56, 60, 61, 65, 66, 75, 76, 80, 81, 85, 86, 90, 91, 100, 102, 120, 122, 150, 153, 200, 204, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Nonnegative integers representable as a linear combination of 1, 5, 10, 25, and 50 with nonnegative coefficients, minimal sum of coefficients, and all nonzero coefficients equal.
Includes all nonnegative multiples of 50 and every term > 204 is a multiple of 50.
Unlike A212773, here it is permitted--and necessary--to use a single denomination for some amounts; otherwise, this sequence would be finite.
LINKS
FORMULA
a(n) = (n-41)*50 for n >= 46.
EXAMPLE
a(37) = 91 is a term because the minimal number of coins to equal the amount 91 is five, 91 = 1*1 + 1*5 + 1*10 + 1*25 + 1*50, and there is one of each of the five denominations used.
a(45) = 204 is a term because the minimal number of coins for 204 is eight, 204 = 4*1 + 4*50, and there are four of each of the two denominations used.
Although 12 can be represented as 12*1 or 2*1 + 2*5, requiring 12 or 4 coins and each otherwise meeting the criteria, three (2*1 + 1*10) is the minimal number of coins required and 2 does not equal 1, so 12 is not a term.
CROSSREFS
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, May 29 2012
STATUS
approved
A085502 Number of (unordered) ways of making change for n dollars using coins of denominations 1, 5, 10, 25, 50 and 100. +10
3
1, 293, 2728, 12318, 38835, 98411, 215138, 422668, 765813, 1302145, 2103596, 3258058, 4870983, 7066983, 9991430, 13812056, 18720553, 24934173, 32697328, 42283190, 53995291, 68169123, 85173738, 105413348, 129328925, 157399801, 190145268, 228126178, 271946543 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = (n + 1) (80 n^4 + 310 n^3 + 362 n^2 + 121 n + 6) / 6. - Dean Hickerson
From Colin Barker, Feb 21 2017: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
G.f.: (1 + 287*x + 985*x^2 + 325*x^3 + 2*x^4) / (1 - x)^6.
(End)
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff(1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)*(1-x^100))+ x*O(x^n), n))}
for(n=0, 30, print1(a(n*100)", "))
(PARI) Vec((1 + 287*x + 985*x^2 + 325*x^3 + 2*x^4) / (1 - x)^6 + O(x^30)) \\ Colin Barker, Feb 21 2017
CROSSREFS
Cf. A001300.
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Aug 15 2003
STATUS
approved
A267419 Number of ways of making change for n cents using coins whose values are the previous terms in the sequence, starting with 1,2 cents. +10
0
1, 2, 2, 3, 5, 8, 10, 14, 17, 23, 28, 35, 43, 53, 64, 78, 93, 112, 132, 158, 184, 217, 253, 295, 342, 396, 455, 526, 600, 689, 784, 893, 1014, 1150, 1299, 1468, 1651, 1860, 2084, 2339, 2613, 2921, 3257, 3628, 4034, 4482, 4967, 5508, 6087, 6731, 7426, 8188, 9017, 9920, 10898, 11969, 13120, 14382, 15737, 17215 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
EXAMPLE
For n=4, the coins available are 1,2. There are a(4)=3 ways to make 4 cents with these coins:
4 = 1+1+1+1
4 = 2+1+1
4 = 2+2
Since there are 3 ways, now the available coins are 1,2,3. For n=5, we have:
5 = 1+1+1+1+1
5 = 2+1+1+1
5 = 2+2+1
5 = 3+1+1
5 = 3+2
for 5 ways to make change, so now 1,2,3,5 are available, etc.
MATHEMATICA
a = {1, 2}; Do[AppendTo[a, Count[IntegerPartitions@ n, w_ /; AllTrue[w, MemberQ[a, #] &]]], {n, 3, 60}]; a (* Michael De Vlieger, Jan 15 2016, Version 10 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christopher Cormier, Jan 14 2016
STATUS
approved
A339094 Number of (unordered) ways of making change for n US Dollars using the current US denominations of 1$, 2$, 5$, 10$, 20$, 50$ and 100$ bills. +10
0
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 41, 44, 51, 54, 61, 68, 75, 82, 89, 96, 109, 116, 129, 136, 149, 162, 175, 188, 201, 214, 236, 249, 271, 284, 306, 328, 350, 372, 394, 416, 451, 473, 508, 530, 565, 600, 635, 670, 705, 740, 793, 828, 881, 916 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Not the same as A001313. First difference appears at A001313(100) being 4562, whereas a(100) is 4563; obviously one more than A001313(100).
Not the same as A057537.
Number of partitions of n into parts 1, 2, 5, 10, 20, 50 and 100.
LINKS
FORMULA
G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^20)*(1-x^50)*(1-x^100)).
EXAMPLE
a(5) is 4 because 1+1+1+1+1 = 2+1+1+1 = 2+2+1 = 5.
MATHEMATICA
f[n_] := Length@ IntegerPartitions[n, All, {1, 2, 5, 10, 20, 50, 100}]; Array[f, 75, 0] (* or *)
CoefficientList[ Series[1/((1 - x) (1 - x^2) (1 - x^5) (1 - x^10) (1 - x^20) (1 - x^50) (1 - x^100)), {x, 0, 75}], x] (* or *)
Table[ Length@ FrobeniusSolve[{1, 2, 5, 10, 20, 50, 100}, n]], {n, 0, 75}] (* much slower *)
PROG
(PARI) coins(v[..])=my(x='x); prod(i=1, #v, 1/(1-x^v[i]))
Vec(coins(1, 2, 5, 10, 20, 50, 100)+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Nov 25 2020
STATUS
approved
page 1

Search completed in 0.014 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 15:38 EDT 2024. Contains 375545 sequences. (Running on oeis4.)