[go: up one dir, main page]

login
A169718
Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 and 100 cents.
7
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 50, 50, 50, 50, 50, 62, 62, 62, 62, 62, 77, 77, 77, 77, 77, 93, 93, 93, 93, 93, 112, 112, 112, 112, 112, 134, 134
OFFSET
0,6
COMMENTS
a(n) = A001300(n) for n < 100; a(n) = A001299(n) for n < 50. - Reinhard Zumkeller, Dec 15 2013
Number of partitions of n into parts 1, 5, 10, 25, 50, and 100. - Joerg Arndt, Sep 05 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
FORMULA
G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)*(1-x^100)).
MATHEMATICA
Table[Length[FrobeniusSolve[{1, 5, 10, 25, 50, 100}, n]], {n, 0, 80}] (* or *) CoefficientList[Series[1/((1-x)(1-x^5)(1-x^10)(1-x^25)(1-x^50)(1-x^100)), {x, 0, 80}], x] (* Harvey P. Dale, Dec 25 2011 *)
PROG
(Haskell)
a169718 = p [1, 5, 10, 25, 50, 100] where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Dec 15 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 20 2010
STATUS
approved