[go: up one dir, main page]

login
A001300
Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 cents.
10
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 50, 50, 50, 50, 50, 62, 62, 62, 62, 62, 77, 77, 77
OFFSET
0,6
COMMENTS
Number of partitions of n into parts 1, 5, 10, 25, and 50. - Joerg Arndt, May 10 2014
a(n) = A001299(n) for n < 50; a(n) = A169718(n) for n < 100. - Reinhard Zumkeller, Dec 15 2013
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1, Problems 1 and 2.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1).
FORMULA
G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)).
MAPLE
1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50));
MATHEMATICA
CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)(1 - x^25)(1 - x^50)), {x, 0, 65} ], x ]
PROG
(Haskell)
a001300 = p [1, 5, 10, 25, 50] where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Dec 15 2013
(PARI) a(n)=floor(((n\5)^4+38*(n\5)^3+476*(n\5)^2+2185*(n\5)+3735)/2400+(n\5+1)*(-1)^(n\5)/160+(n\5\5+1)*[0, 0, 1, 0, -1][n\5%5+1]/10) \\ Tani Akinari, May 10 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 15 1996
STATUS
approved