[go: up one dir, main page]

login
A001362
Number of ways of making change for n cents using coins of 1, 2, 4, 10 cents.
2
1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 13, 18, 18, 24, 24, 31, 31, 39, 39, 49, 49, 60, 60, 73, 73, 87, 87, 103, 103, 121, 121, 141, 141, 163, 163, 187, 187, 213, 213, 242, 242, 273, 273, 307, 307, 343, 343, 382, 382, 424, 424, 469, 469, 517, 517, 568, 568, 622, 622
OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 4, and 10. - Joerg Arndt, Sep 05 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
FORMULA
G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^10)).
MAPLE
1/(1-x)/(1-x^2)/(1-x^4)/(1-x^10): seq(coeff(series(%, x, n+1), x, n), n=0..80);
MATHEMATICA
nn = 1000; CoefficientList[Series[1/((1 - x^1) (1 - x^2) (1 - x^4) (1 - x^10)), {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)
Table[Length[FrobeniusSolve[{1, 2, 4, 10}, n]], {n, 0, 60}] (* Harvey P. Dale, May 20 2021 *)
PROG
(PARI) a(n)=floor((n\2+8)*(2*(n\2)^2+11*(n\2)+18)/120) \\ Tani Akinari, May 14 2014
CROSSREFS
Twice A001304.
Sequence in context: A001364 A029010 A060027 * A358206 A001310 A328422
KEYWORD
nonn
STATUS
approved