OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 4, and 10. - Joerg Arndt, Sep 05 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 186
Index entries for linear recurrences with constant coefficients, signature (1, 1, -1, 1, -1, -1, 1, 0, 0, 1, -1, -1, 1, -1, 1, 1, -1).
FORMULA
G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^10)).
MAPLE
1/(1-x)/(1-x^2)/(1-x^4)/(1-x^10): seq(coeff(series(%, x, n+1), x, n), n=0..80);
MATHEMATICA
nn = 1000; CoefficientList[Series[1/((1 - x^1) (1 - x^2) (1 - x^4) (1 - x^10)), {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)
Table[Length[FrobeniusSolve[{1, 2, 4, 10}, n]], {n, 0, 60}] (* Harvey P. Dale, May 20 2021 *)
PROG
(PARI) a(n)=floor((n\2+8)*(2*(n\2)^2+11*(n\2)+18)/120) \\ Tani Akinari, May 14 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved