[go: up one dir, main page]

login
A123126 revision #14

A123126
Absolute value of coefficient of X^2 in the characteristic polynomial of the n-th power of the matrix M={{1,1,1,1,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0}}.
4
1, 1, 4, 1, 31, 22, 1, 33, 4, 141, 199, 10, 209, 113, 604, 1473, 375, 1174, 1521, 2721, 9580, 5501, 6671, 14346, 15681, 57409, 56596, 44577, 112463, 119382, 333313, 480641, 360628, 800973, 1007191, 1988362, 3628369, 3160689, 5525420, 8309793
OFFSET
1,3
COMMENTS
Also sum of successive powers of all combinations of product of three different roots of quintic pentanacci polynomial X^5-X^4-X^3-X^2-X-1 Let roots are X1,X2,X3,X4,X5 (X1 X2 X3)^n + (X1 X2 X4)^n + (X1 X2 X5)^n + ... + (X3 X4 X5)^n A074048 are opposite coefficients by X^4 of characteristic polynomials successive powers of pentanacci matrix or successive powers of sums all roots (X1)^n+(X2)^n+(X3)^n+(X4)^n+(X5)^n.
FORMULA
G.f.: -x*(10*x^9 +9*x^8 +16*x^7 +21*x^6 +18*x^5 -30*x^4 +4*x^3 -3*x^2 -1) / (x^10 +x^9 +2*x^8 +3*x^7 +3*x^6 -6*x^5 +x^4 -x^3 -x +1). - Colin Barker, May 16 2013
EXAMPLE
a(5)=31 because characteristic polynomial fifth power of pentanacci matrix M^5 is X^5 - 31X^4 + 49X^3 - 31X^2 + 9X - 1.
MAPLE
with(linalg): M[1]:=matrix(5, 5, [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]): for n from 2 to 45 do M[n]:=multiply(M[n-1], M[1]) od: seq(-coeff(charpoly(M[n], x), x, 2), n=1..45); # Emeric Deutsch
MATHEMATICA
f[n_] := CoefficientList[ CharacteristicPolynomial[ MatrixPower[{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, n], x], x][[3]]; Array[f, 40] (* Robert G. Wilson v *)
CROSSREFS
Sequence in context: A077097 A190647 A353792 * A303277 A174501 A370136
KEYWORD
nonn
AUTHOR
Artur Jasinski, Sep 30 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 24 2006
More terms from Emeric Deutsch and Robert G. Wilson v, Oct 24 2006
STATUS
approved