[go: up one dir, main page]

login
Search: a123126 -id:a123126
     Sort: relevance | references | number | modified | created      Format: long | short | data
Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5), a(0)=a(1)=a(2)=a(3)=0, a(4)=1.
(Formerly M1122 N0429)
+10
57
0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930, 13624, 26784, 52656, 103519, 203513, 400096, 786568, 1546352, 3040048, 5976577, 11749641, 23099186, 45411804, 89277256, 175514464, 345052351, 678355061, 1333610936, 2621810068
OFFSET
0,7
COMMENTS
Number of permutations satisfying -k <= p(i) - i <= r, i=1..n-4, with k=1, r=4. - Vladimir Baltic, Jan 17 2005
a(n) is the number of compositions of n-4 with no part greater than 5. - Vladimir Baltic, Jan 17 2005
The pentanomial (A035343(n)) transform of a(n) is a(5n+4), n >= 0. - Bob Selcoe, Jun 10 2014
a(n) is the number of ways to tile a strip of length n-4 with squares, dominoes, trominoes (of length 3), and rectangles with length 4 (tetraminoes) and length 5 (pentaminoes). - Wajdi Maaloul, Jun 21 2022
REFERENCES
Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Abdullah Açikel, Amrouche Said, Hacene Belbachir, and Nurettin Irmak, On k-generalized Lucas sequence with its triangle, Turkish J. Math. (2023) Vol. 47, No. 4, Art. 6, 1129-1143. See p. 1130.
Tomás Aguilar-Fraga, Jennifer Elder, Rebecca E. Garcia, Kimberly P. Hadaway, Pamela E. Harris, Kimberly J. Harry, Imhotep B. Hogan, Jakeyl Johnson, Jan Kretschmann, Kobe Lawson-Chavanu, J. Carlos Martínez Mori, Casandra D. Monroe, Daniel Quiñonez, Dirk Tolson III, and Dwight Anderson Williams II, Interval and L-interval Rational Parking Functions, arXiv:2311.14055 [math.CO], 2023. See p. 14.
Joerg Arndt, Matters Computational (The Fxtbook), pp. 307-309.
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135.
Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
O. Deveci, Y. Akuzum, E. Karaduman, and O. Erdag, The Cyclic Groups via Bezout Matrices, Journal of Mathematics Research, Vol. 7, No. 2, 2015, pp. 34-41.
Ömür Deveci, Zafer Adıgüzel, and Taha Doğan, On the Generalized Fibonacci-circulant-Hurwitz numbers, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 1, 179-190.
G. P. B. Dresden and Z. Du, A Simplified Binet Formula for k-Generalized Fibonacci Numbers, J. Int. Seq. 17 (2014) # 14.4.7.
I. Flores, k-Generalized Fibonacci numbers, Fib. Quart., 5 (1967), 258-266.
Taras Goy and Mark Shattuck, Some Toeplitz-Hessenberg Determinant Identities for the Tetranacci Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.8.
V. E. Hoggatt, Jr. and M. Bicknell, Diagonal sums of generalized Pascal triangles, Fib. Quart., 7 (1969), 341-358, 393.
F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231-243.
Omar Khadir, László Németh, and László Szalay, Tiling of dominoes with ranked colors, Results in Math. (2024) Vol. 79, Art. No. 253. See p. 2.
Sergey Kirgizov, Q-bonacci words and numbers, arXiv:2201.00782 [math.CO], 2022.
Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
László Németh and László Szalay, Explicit solution of system of two higher-order recurrences, arXiv:2408.12196 [math.NT], 2024. See p. 10.
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Helmut Prodinger, Counting Palindromes According to r-Runs of Ones Using Generating Functions, J. Int. Seq. 17 (2014) # 14.6.2, odd length middle 0, r=4.
B. Sivakumar and V. James, A Notes on Matrix Sequence of Pentanacci Numbers and Pentanacci Cubes, Communications in Mathematics and Applications (2022) Vol. 13, Iss. 2, 603-611.
Yüksel Soykan, On A Generalized Pentanacci Sequence, Asian Research Journal of Mathematics (2019) Vol. 14, No. 3, 1-9.
Yüksel Soykan, Sum Formulas for Generalized Fifth-Order Linear Recurrence Sequences, Journal of Advances in Mathematics and Computer Science (2019) Vol. 34, No. 5, 1-14.
Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020).
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
Eric Weisstein's World of Mathematics, Pentanacci Number
FORMULA
G.f.: x^4/(1 - x - x^2 - x^3 - x^4 - x^5). - Simon Plouffe in his 1992 dissertation.
G.f.: Sum_{n >= 0} x^(n+4) * (Product_{k = 1..n} (k + k*x + k*x^2 + k*x^3 + x^4)/(1 + k*x + k*x^2 + k*x^3 + k*x^4)). - Peter Bala, Jan 04 2015
Another form of the g.f.: f(z) = (z^4-z^5)/(1-2*z+z^6); then a(n) = Sum_{i=0..floor((n-4)/6)} ((-1)^i*binomial(n-4-5*i,i)*2^(n-4-6*i)) - Sum_{i=0..floor((n-5)/6)} ((-1)^i*binomial(n-5-5*i,i)*2^(n-5-6*i)) with convention Sum_{i=m..n} alpha(i) = 0 for m > n. - Richard Choulet, Feb 22 2010
a(n) = Sum_{k=1..n} (Sum_{r=0..k} (binomial(k,r) * Sum_{m=0..r} (binomial(r,m) * Sum_{j=0..m} (binomial(m,j)*binomial(j,n-m-k-j-r))))), n > 0. - Vladimir Kruchinin, Aug 30 2010
Sum_{k=0..4*n} a(k+b)*A035343(n,k) = a(5*n+b), b >= 0.
a(n) = 2*a(n-1) - a(n-6). - Vincenzo Librandi, Dec 19 2010
a(n) = (Sum_{i=0..n-1} a(i)*A074048(n-i))/(n-4) for n > 4. - Greg Dresden and Advika Srivastava, Oct 01 2019
For k>0 and n>0, a(n+5*k) = A074048(k)*a(n+4*k) - A123127(k-1)*a(n+3*k) + A123126(k-1)*a(n+2*k) - A074062(k)*a(n+k) + a(n). - Kai Wang, Sep 06 2020
lim n->oo a(n)/a(n-1) = A103814. - R. J. Mathar, Mar 11 2024
EXAMPLE
n=2: a(14) = (1*1 + 2*1 + 3*2 + 4*4 + 5*8 + 4*16 + 3*31 + 2*61 + 1*120) = 464. - Bob Selcoe, Jun 10 2014
G.f. = x^4 + x^5 + 2*x^6 + 4*x^7 + 8*x^8 + 16*x^9 + 31*x^10 + 120*x^11 + ...
MAPLE
g:=1/(1-z-z^2-z^3-z^4-z^5): gser:=series(g, z=0, 49): seq((coeff(gser, z, n)), n=-4..32); # Zerinvary Lajos, Apr 17 2009
# second Maple program:
a:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>, <0|0|0|0|1>, <1|1|1|1|1>>^n)[1, 5]:
seq(a(n), n=0..44); # Alois P. Heinz, Apr 09 2021
MATHEMATICA
CoefficientList[Series[x^4/(1 - x - x^2 - x^3 - x^4 - x^5), {x, 0, 50}], x]
a[0] = a[1] = a[2] = a[3] = 0; a[4] = a[5] = 1; a[n_] := a[n] = 2 a[n - 1] - a[n - 6]; Array[a, 37, 0]
LinearRecurrence[{1, 1, 1, 1, 1}, {0, 0, 0, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
PROG
(PARI) a=vector(100); a[4]=a[5]=1; for(n=6, #a, a[n]=a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]); concat(0, a) \\ Charles R Greathouse IV, Jul 15 2011
(PARI) A001591(n, m=5)=(matrix(m, m, i, j, i==j-1||i==m)^n)[1, m] \\ M. F. Hasler, Apr 20 2018
(PARI) a(n)= {my(x='x, p=polrecip(1 - x - x^2 - x^3 - x^4 - x^5)); polcoef(lift(Mod(x, p)^n), 4); }
vector(41, n, a(n-1)) \\ Joerg Arndt, May 16 2021
(Maxima) a(n):=mod(floor(10^((n-4)*(n+1))*10^(5*(n+1))*(10^(n+1)-1)/(10^(6*(n+1))-2*10^(5*(n+1))+1)), 10^n); /* Tani Akinari, Apr 10 2014 */
(Magma) a:=[0, 0, 0, 0, 1]; [n le 5 select a[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4) + Self(n-5): n in [1..40]]; // Marius A. Burtea, Oct 03 2019
(Python)
def pentanacci():
a, b, c, d, e = 0, 0, 0, 0, 1
while True:
yield a
a, b, c, d, e = b, c, d, e, a + b + c + d + e
f = pentanacci()
print([next(f) for _ in range(100)]) # Reza K Ghazi Apr 09 2021
CROSSREFS
Row 5 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).
Cf. A106303 (Pisano period lengths).
Cf. A035343 (pentanomial coefficients).
KEYWORD
nonn,easy
STATUS
approved
Pentanacci numbers with initial conditions a(0)=5, a(1)=1, a(2)=3, a(3)=7, a(4)=15.
+10
32
5, 1, 3, 7, 15, 31, 57, 113, 223, 439, 863, 1695, 3333, 6553, 12883, 25327, 49791, 97887, 192441, 378329, 743775, 1462223, 2874655, 5651423, 11110405, 21842481, 42941187, 84420151, 165965647, 326279871, 641449337, 1261056193, 2479171199, 4873922247
OFFSET
0,1
COMMENTS
These pentanacci numbers follow the same pattern as Lucas, generalized tribonacci(A001644) and generalized tetranacci (A073817) numbers: Binet's formula is a(n)=r1^n+r^2^n+r3^n+r4^n+r5^n, with r1, r2, r3, r4, r5 roots of the characteristic polynomial. a(n) is also the trace of A^n, where A is the pentamatrix ((1,1,0,0,0),(1,0,1,0,0),(1,0,0,1,0),(1,0,0,0,1),(1,0,0,0,0)).
For n >= 5, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain five consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). (For n=1,2,3,4 the statement is still true provided we allow the sequence to wrap around itself on a circle). - Petros Hadjicostas, Dec 18 2016
a(3407) has 1001 decimal digits. - Michael De Vlieger, Dec 28 2016
LINKS
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29 (1991), 290-297.
Spiros D. Dafnis, Andreas N. Philippou, and Ioannis E. Livieris, An Alternating Sum of Fibonacci and Lucas Numbers of Order k, Mathematics (2020) Vol. 9, 1487.
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
S. Saito, T. Tanaka, and N. Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values, Journal of Integer Sequences, 14 (2011), # 11.2.4, Table 3.
Yüksel Soykan, On A Generalized Pentanacci Sequence, Asian Research Journal of Mathematics (2019) Vol. 14, No. 3, 1-9.
Yüksel Soykan, Sum Formulas for Generalized Fifth-Order Linear Recurrence Sequences, Journal of Advances in Mathematics and Computer Science (2019) Vol. 34, No. 5, 1-14.
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
FORMULA
a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5).
G.f.: (5-4*x-3*x^2-2*x^3-x^4) / (1-x-x^2-x^3-x^4-x^5).
a(n) = 2*a(n-1) -a(n-6), n>5. [Vincenzo Librandi, Dec 20 2010]
For k>0 and n>=0, a(n+5*k) = a(k)*a(n+4*k) - A123127(k-1)*a(n+3*k) + A123126(k-1)*a(n+2*k) - A074062(k)*a(n+k) + a(n). For example, if k=4, n=3, we have a(n+5*k) = a(23) = 5651423, a(4)*a(19) - A123127(3)*a(15) + A123126(3)*a(1695) - A074062(4)*a(7) + a(3) = (15)*(378329) - (1)*(25327) + (1)*(1695) - (-1)*(113) + (7) = 5651423. - Kai Wang, Sep 13 2020
From Kai Wang, Dec 16 2020: (Start)
For k >= 0,
| a(k+4) a(k+5) a(k+6) a(k+7) a(k+8) |
| a(k+3) a(k+4) a(k+5) a(k+6) a(k+7) |
det | a(k+2) a(k+3) a(k+4) a(k+5) a(k+6) | = 9584 = A106273(5).
| a(k+1) a(k+2) a(k+3) a(k+4) a(k+5) |
| a(k) a(k+1) a(k+2) a(k+3) a(k+4) |
(End)
MATHEMATICA
CoefficientList[Series[(5-4*x-3*x^2-2*x^3-x^4)/(1-x-x^2-x^3-x^4-x^5), {x, 0, 30}], x]
LinearRecurrence[{1, 1, 1, 1, 1}, {5, 1, 3, 7, 15}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
PROG
(PARI) polsym(polrecip(1-x-x^2-x^3-x^4-x^5), 33) \\ Joerg Arndt, Jan 28 2019
CROSSREFS
Cf. A000078, A001630, A001644, A000032, A073817, A106297 (Pisano Periods).
Essentially the same as A023424.
Cf. A106273.
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 14 2002
STATUS
approved
Coefficient of X^3 in the characteristic polynomial of the n-th power of the matrix M = {{1,1,1,1,1}, {1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0,0}, {0,0,0,1,0}}.
+10
4
-1, -3, -4, 1, 49, -42, -57, -31, 140, 497, -815, -758, 311, 3021, 3796, -13759, -7039, 16086, 45295, 3681, -204684, -10431, 365377, 507914, -618001, -2642435, 1427468, 6214881, 3341553, -16185322, -27959273, 42625665, 85186108, -23867663, -286766767, -193092086, 854985639, 900760205
OFFSET
1,2
COMMENTS
Also sum of the successive powers of all combinations of products of two different roots of the quintic pentanacci polynomial X^5 -X^4 -X^3 -X^2 -X -1; namely (X1*X2)^n + (X1*X3)^n + (X1*X4)^n + (X1*X5)^n + (X2*X3)^n + (X2*X4)^n + (X2*X5)^n + (X3*X4)^n + (X3*X5)^n + (X4*X5)^n, where X1, X2, X3, X4, X5 are the roots. A074048 are the coefficients, with changed signs, of X^4 in the characteristic polynomials of the successive powers of the pentanacci matrix or (X1)^n + (X2)^n + (X3)^n + (X4)^n + (X5)^n.
Let g(y) = y^10 + y^9 + 2*y^8 + 3*y^7 + 3*y^6 - 6*y^5 + y^4 - y^3 - y + 1 and {y1,...,y10} be the roots of g(y). Then a(n) = y1^n + ... + y10^n. - Kai Wang, Nov 01 2020
LINKS
FORMULA
G.f.: -x*(1 +4*x +9*x^2 +12*x^3 -30*x^4 +6*x^5 -7*x^6 -9*x^8 +10*x^9)/(1 +x +2*x^2 +3*x^3 +3*x^4 -6*x^5 +x^6 -x^7 -x^9 +x^10). - Colin Barker, May 16 2013
EXAMPLE
a(5) = 49 because the characteristic polynomial of fifth power of pentanacci matrix M^5 is X^5 -31*X^4 +49*X^3 -31*X^2 +9*X -1 in which coefficient of X^3 is 49.
MAPLE
with(linalg): M[1]:=matrix(5, 5, [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]): for n from 2 to 40 do M[n]:=multiply(M[n-1], M[1]) od: seq(coeff(charpoly(M[n], x), x, 3), n=1..40); # Emeric Deutsch, Oct 24 2006
MATHEMATICA
f[n_]:= CoefficientList[CharacteristicPolynomial[MatrixPower[{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, n], x], x][[4]]; Array[f, 36] (* Robert G. Wilson v, Oct 24 2006 *)
LinearRecurrence[{-1, -2, -3, -3, 6, -1, 1, 0, 1, -1}, {-1, -3, -4, 1, 49, -42, -57, -31, 140, 497}, 40] (* Harvey P. Dale, Apr 10 2023 *)
PROG
(PARI) g(y) = y^10 + y^9 + 2*y^8 + 3*y^7 + 3*y^6 - 6*y^5 + y^4 - y^3 - y + 1;
my(v=polsym(g(y), 33)); vector(#v-1, n, v[n+1]) \\ Joerg Arndt, Nov 02 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( -x*(1+4*x+9*x^2 +12*x^3-30*x^4+6*x^5-7*x^6-9*x^8+10*x^9)/(1+x+2*x^2+3*x^3+3*x^4-6*x^5 +x^6 -x^7 -x^9+x^10) )); // G. C. Greubel, Aug 03 2021
(Sage)
def A123127_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( -x*(1+4*x+9*x^2+12*x^3-30*x^4+6*x^5-7*x^6-9*x^8+10*x^9)/(1+x+2*x^2 +3*x^3+3*x^4-6*x^5+x^6-x^7-x^9+x^10) ).list()
a=A123127_list(40); a[1:] # G. C. Greubel, Aug 03 2021
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Sep 30 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 24 2006
More terms from Emeric Deutsch and Robert G. Wilson v, Oct 24 2006
STATUS
approved

Search completed in 0.009 seconds