OFFSET
1
COMMENTS
From Antti Karttunen, Oct 01 2018: (Start)
From n=2 onward this is also binary sequence mentioned in Baldini & Eschgfäller 2016 paper that is generated by a coupled dynamical system (f,lambda,alpha) with parameters set as f(k) = A000005(k), lambda(y) = 1-y for y in Y = {0,1}, and alpha(k) = 0 for k in Omega = {2}. Then a(n) for n >= 2 is defined by a(n) = alpha(n) if n in Omega, and otherwise by a(n) = lambda(a(f(n))), which simplifies to the formula I have today added to the formula section. (End)
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
Lucilla Baldini, Josef Eschgfäller, Random functions from coupled dynamical systems, arXiv preprint arXiv:1609.01750 [math.CO], 2016. See Example 3.5.
FORMULA
PROG
(PARI)
up_to = 65537;
A262684lista(up_to) = { my(v=vector(up_to)); v[1] = v[2] = 0; for(n=3, up_to, v[n] = 1-v[numdiv(n)]); (v); };
v262684 = A262684lista(up_to);
A262684(n) = v262684[n]; \\ Antti Karttunen, Oct 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 28 2015
STATUS
approved