[go: up one dir, main page]

login
A262681
Odd bisection of A262680.
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1
OFFSET
0,85
COMMENTS
Number of perfect squares (A000290) encountered before zero is reached when starting from k = 2n+1 and repeatedly applying the map that replaces k by k - d(k), where d(k) is the number of divisors of k (A000005). This count includes n itself if it is a square, but excludes the zero.
LINKS
FORMULA
a(n) = A262680((2*n)+1).
PROG
(Scheme) (define (A262681 n) (A262680 (+ n n 1)))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 03 2015
STATUS
approved