[go: up one dir, main page]

login
A094754
Middle coefficient of cyclotomic polynomial Phi_n(x).
3
0, 0, 1, 0, 1, -1, 1, 0, 1, 1, 1, -1, 1, -1, -1, 0, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 0, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 0, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1
OFFSET
1,385
COMMENTS
a(n) = 0 if n is a power of 2, otherwise a(n) is odd.
The first term with absolute value > 1 is a(385) = -3. - Michel Marcus, Apr 24 2019
LINKS
Dorin Andrica, Ovidiu Bagdasar, On some results concerning the polygonal polynomials, Carpathian Journal of Mathematics (2019) Vol. 35, No. 1, 1-11.
G. P. Dresden, On the middle coefficient of a cyclotomic polynomial, Amer. Math. Monthly, 111 (No. 6, 2004), 531-533.
Gregory Dresden, On the Middle Coefficient of a Cyclotomic Polynomial, arXiv:1904.10593 [math.NT], 2019.
MAPLE
with(numtheory); t1:=[0, 0]; for n from 3 to 120 do t2:=cyclotomic(n, x); t3:=degree(t2, x); t1:=[op(t1), coeff(t2, x, floor(t3/2))]; od: t1;
MATHEMATICA
Array[If[EvenQ@ Length@ #, 0, #[[Ceiling[Length[#]/2] ]] ] &@ CoefficientList[Cyclotomic[#, x], x] &, 105] (* Michael De Vlieger, Mar 29 2019 *)
CROSSREFS
Cf. A095877 (n such that the middle coefficient of Phi_n(x) has a value not obtained for smaller n).
Sequence in context: A252744 A340373 A043545 * A321694 A262684 A373263
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jun 10 2004
EXTENSIONS
Second offset from Michel Marcus, Apr 24 2019
STATUS
approved