OFFSET
0,12
COMMENTS
LINKS
Seiichi Manyama, Rows n = 0..49, flattened
FORMULA
T(n,k) = Sum_{i=0..floor(k/9)} (-1)^i*binomial(n,i)*binomial(n+k-1-9*i,n-1) for n >= 0 and 0 <= k <= 8*n. - Peter Bala, Sep 07 2013
EXAMPLE
The triangle starts:
(row n=0) 1; (row sum = 1, row length = 1)
(row n=1) 1,1,1,1,1,1,1,1,1; (row sum = 9, row length = 9)
(row n=2) 1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2,1; (sum = 81, length = 17)
(row n=3) 1,3,6,10,15,21,28,36,45,52,57,60,61,60,... (sum = 729, length = 25)
(row n=4) 1, 4, 10, 20, 35, 56, 84, 120, 165, 216, 270, 324, 375, 420, 456,... (sum = 9^4; length = 33),
etc.
MAPLE
#Define the r-nomial coefficients for r = 1, 2, 3, ...
rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):
#Display the 9-nomials as a table
r := 9: rows := 10:
for n from 0 to rows do
seq(rnomial(r, n, k), k = 0..(r-1)*n)
end do; # Peter Bala, Sep 07 2013
PROG
(PARI) concat(vector(5, k, Vec(sum(j=0, 8, x^j)^(k-1))))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
M. F. Hasler, Jun 17 2012
STATUS
approved