OFFSET
0,13
COMMENTS
The n-th row also yields the number of ways to get a total of n, n+1, ..., 10n, when throwing n 10-sided dice, or summing n integers ranging from 1 to 10.
The row sums equal 10^n = A011557(n).
The row lengths are 1 + 9n = 10n - (n-1) = A017173(n).
T(n,k) is the number of integers in the [0, 10^n-1] range distributed according to the sum k of their digits. - Miquel Cerda, Jun 21 2017
The sum of the squares of the integers of the n-th row gives A174061(n). - Miquel Cerda, Jul 03 2017
LINKS
Seiichi Manyama, Rows n = 0..46, flattened
FORMULA
T(n,k) = Sum_{i = 0..floor(k/10)} (-1)^i*binomial(n,i)*binomial(n+k-1-10*i,n-1) for n >= 0 and 0 <= k <= 9*n. - Peter Bala, Sep 07 2013
EXAMPLE
There are 1, 3, 6, 10, ... ways to score a total of 4, 5, 6, 7, ... when throwing three 10-sided dice.
The table begins as follows:
(row n=0) 1; (row sum = 1, row length = 1)
(row n=1) 1,1,1,1,1,1,1,1,1,1; (row sum = 10, row length = 10)
(row n=2) 1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1; (sum = 100, length = 19)
(row n=3) 1,3,6,10,15,21,28,36,45,55,63,69,73,75,75,73,...; row sum = 1000;
(row n=4) 1,4,10,20,35,56,84,120,165,220,282,348,415,...; row sum = 10^4;
etc.
Number of integers in (row n=2): k(2)=3, because in the range 0 to 99 there are 3 integers whose digits sum to 2: 2, 11 and 20. - Miquel Cerda, Jun 21 2017
MAPLE
#Define the r-nomial coefficients for r = 1, 2, 3, ...
rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):
#Display the 10-nomials as a table
r := 10: rows := 10:
for n from 0 to rows do
seq(rnomial(r, n, k), k = 0..(r-1)*n)
end do;
# Peter Bala, Sep 07 2013
PROG
(PARI) concat(vector(5, k, Vec(sum(j=0, 9, x^j)^(k-1))))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
M. F. Hasler, Jun 17 2012
STATUS
approved