[go: up one dir, main page]

login
A171890
Octonomial coefficient array.
12
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 36, 42, 46, 48, 48, 46, 42, 36, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 120, 161, 204, 246, 284, 315, 336, 344, 336, 315, 284, 246, 204, 161, 120, 84, 56, 35
OFFSET
0,11
COMMENTS
Row lengths are 1,8,15,22,... = 1+7n = A016993(n). Row sums are 1,8,64,... = 8^n = A001018(n). M. F. Hasler, Jun 17 2012
LINKS
FORMULA
Row n has g.f. (1+x+...+x^7)^n.
T(n,k) = sum {i = 0..floor(k/8)} (-1)^i*binomial(n,i)*binomial(n+k-1-8*i,n-1) for n >= 0 and 0 <= k <= 7*n. - Peter Bala, Sep 07 2013
EXAMPLE
Array begins:
[1]
[1, 1, 1, 1, 1, 1, 1, 1]
[1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1]
...
MAPLE
#Define the r-nomial coefficients for r = 1, 2, 3, ...
rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):
#Display the 8-nomials as a table
r := 8: rows := 10:
for n from 0 to rows do
seq(rnomial(r, n, k), k = 0..(r-1)*n)
end do;
# Peter Bala, Sep 07 2013
MATHEMATICA
Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)^n, x], {n, 0, 10}]] (* T. D. Noe, Apr 04 2011 *)
PROG
(PARI) concat(vector(5, k, Vec(sum(j=0, 7, x^j)^k))) \\ M. F. Hasler, Jun 17 2012
CROSSREFS
The q-nomial arrays are for q=2..10: A007318 (Pascal), A027907, A008287,A035343, A063260, A063265, A171890, A213652, A213651.
Sequence in context: A325351 A363776 A279319 * A287793 A073795 A017893
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Oct 19 2010
STATUS
approved