[go: up one dir, main page]

login
A199277
Decimal expansion of x<0 satisfying 2*x^2+3*x*cos(x)=3.
3
1, 3, 7, 7, 3, 6, 8, 6, 7, 1, 8, 3, 8, 8, 2, 5, 1, 5, 7, 0, 6, 2, 9, 9, 6, 3, 8, 0, 5, 2, 9, 3, 3, 3, 5, 3, 5, 2, 4, 4, 4, 6, 4, 1, 9, 3, 8, 5, 9, 2, 8, 6, 9, 9, 6, 5, 0, 5, 3, 5, 0, 5, 9, 9, 5, 1, 6, 7, 1, 5, 2, 2, 5, 2, 9, 5, 3, 0, 9, 3, 0, 3, 0, 8, 3, 0, 1, 1, 8, 3, 8, 8, 2, 0, 2, 3, 9, 3, 8
OFFSET
1,2
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.3773686718388251570629963805293335...
positive: 0.8134750235542935510898993411693045...
MATHEMATICA
a = 2; b = 3; c = 3;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
RealDigits[r] (* A199277 *)
r = x /. FindRoot[f[x] == g[x], {x, .81, .82}, WorkingPrecision -> 110]
RealDigits[r] (* A199278 *)
CROSSREFS
Cf. A199170.
Sequence in context: A016620 A200691 A021269 * A346588 A219313 A354966
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
STATUS
approved