[go: up one dir, main page]

login
A199276
Decimal expansion of x>0 satisfying 2*x^2+3*x*cos(x)=2.
3
5, 4, 7, 0, 0, 5, 7, 4, 0, 5, 4, 6, 8, 8, 9, 5, 7, 6, 4, 3, 6, 9, 2, 3, 2, 4, 7, 1, 5, 0, 7, 5, 5, 7, 2, 5, 0, 8, 7, 7, 5, 8, 0, 3, 0, 4, 0, 5, 9, 8, 1, 9, 6, 3, 2, 2, 3, 5, 5, 7, 5, 8, 3, 7, 7, 8, 5, 7, 5, 3, 9, 8, 1, 3, 5, 2, 1, 6, 9, 9, 0, 8, 4, 6, 8, 6, 5, 7, 4, 8, 2, 5, 2, 6, 1, 5, 2, 8, 6
OFFSET
0,1
COMMENTS
See A199170 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.25750748269679781262452282006866921022...
positive: 0.547005740546889576436923247150755725087...
MATHEMATICA
a = 2; b = 3; c = 2;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]
RealDigits[r] (* A199275 *)
r = x /. FindRoot[f[x] == g[x], {x, .54, .55}, WorkingPrecision -> 110]
RealDigits[r] (* A199276 *)
CROSSREFS
Cf. A199170.
Sequence in context: A244088 A020832 A246724 * A373009 A293380 A358663
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 04 2011
STATUS
approved