[go: up one dir, main page]

login
A246724
Decimal expansion of r_2, the second smallest radius for which a compact packing of the plane exists, with disks of radius 1 and r_2.
12
1, 5, 4, 7, 0, 0, 5, 3, 8, 3, 7, 9, 2, 5, 1, 5, 2, 9, 0, 1, 8, 2, 9, 7, 5, 6, 1, 0, 0, 3, 9, 1, 4, 9, 1, 1, 2, 9, 5, 2, 0, 3, 5, 0, 2, 5, 4, 0, 2, 5, 3, 7, 5, 2, 0, 3, 7, 2, 0, 4, 6, 5, 2, 9, 6, 7, 9, 5, 5, 3, 4, 4, 6, 0, 5, 8, 6, 6, 6, 9, 1, 3, 8, 7, 4, 3, 0, 7, 9, 1, 1, 7, 1, 4, 9, 9, 0, 5, 0, 4, 5, 0, 4
OFFSET
0,2
COMMENTS
Essentially the same digit sequence as A176053 and A020832. - R. J. Mathar, Sep 06 2014
This equals the ratio of the radius of the inner Soddy circle and the common radius of the three kissing circles. See A343235, also for links. - Wolfdieter Lang, Apr 19 2021
Previous comment is, together with A176053, the answer to the 1st problem proposed during the 4th Canadian Mathematical Olympiad in 1972. - Bernard Schott, Mar 16 2022
REFERENCES
Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993 - Canadian Mathematical Society & Société Mathématique du Canada, Problem 1, 1972, page 37, 1993.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2021, p. 62.
The IMO Compendium, Problem 1, 4th Canadian Mathematical Olympiad, 1972.
Samuel G. Moreno and Esther M. García, New infinite products of cosines and Viète-like formulae, Mathematics Magazine, Vol. 86, No. 1 (2013), pp. 15-25.
Bernard Schott, Soddy circles.
FORMULA
Equals (2*sqrt(3) - 3)/3.
Equals A176053 - 2.
Equals -1 + sqrt(2) * sqrt(2-sqrt(2)) * sqrt(2-sqrt(2-sqrt(2))) * ... (Moreno and García, 2013). - Amiram Eldar, Jun 09 2022
EXAMPLE
0.154700538379251529018297561003914911295203502540253752...
MATHEMATICA
RealDigits[(2*Sqrt[3] - 3)/3, 10, 103] // First
CROSSREFS
Cf. A246723 (r_1), A246725 (r_3), A246726 (r_4), A246727 (r_5), A002193 (r_6 = sqrt(2)-1), A246728 (r_7), A246729 (r_8), A246730 (r_9).
Sequence in context: A019323 A244088 A020832 * A199276 A373009 A293380
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved