OFFSET
0,2
COMMENTS
This equals the ratio of the radius of the inner Soddy circle and the common radius of the three kissing circles. See A343235, also for links. - Wolfdieter Lang, Apr 19 2021
Previous comment is, together with A176053, the answer to the 1st problem proposed during the 4th Canadian Mathematical Olympiad in 1972. - Bernard Schott, Mar 16 2022
REFERENCES
Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993 - Canadian Mathematical Society & Société Mathématique du Canada, Problem 1, 1972, page 37, 1993.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2021, p. 62.
The IMO Compendium, Problem 1, 4th Canadian Mathematical Olympiad, 1972.
Samuel G. Moreno and Esther M. García, New infinite products of cosines and Viète-like formulae, Mathematics Magazine, Vol. 86, No. 1 (2013), pp. 15-25.
Bernard Schott, Soddy circles.
FORMULA
Equals (2*sqrt(3) - 3)/3.
Equals A176053 - 2.
Equals -1 + sqrt(2) * sqrt(2-sqrt(2)) * sqrt(2-sqrt(2-sqrt(2))) * ... (Moreno and García, 2013). - Amiram Eldar, Jun 09 2022
EXAMPLE
0.154700538379251529018297561003914911295203502540253752...
MATHEMATICA
RealDigits[(2*Sqrt[3] - 3)/3, 10, 103] // First
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Sep 02 2014
STATUS
approved