OFFSET
0,5
COMMENTS
The Heinz numbers of these integer partitions are given by A324570. - Gus Wiseman, Mar 09 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
EXAMPLE
a(10) = 3 because we have [5,1,1,1,1,1], [3,3,3,1] and [3,2,2,1,1,1].
From Gus Wiseman, Mar 09 2019: (Start)
The a(1) = 1 through a(12) = 5 integer partitions (empty columns not shown):
1 22 221 3111 3311 333 3331 32222 33222
211 41111 321111 322111 44111 322221
511111 322211 332211
332111 4221111
4211111 6111111
(End)
MAPLE
a:=proc(n) local P, c, j, S: with(combinat): P:=partition(n): c:=0: for j from 1 to nops(P) do S:=convert(P[j], set): if nops(P[j])=sum(S[i], i=1..nops(S)) then c:=c+1 else c:=c fi: c: od: end: seq(a(n), n=0..35); # Emeric Deutsch, Mar 01 2006
MATHEMATICA
a[n_] := Module[{P, c, j, S}, P = IntegerPartitions[n]; c = 0; For[j = 1, j <= Length[P], j++, S = Union[P[[j]]]; If[Length[P[[j]]] == Total[S], c++] ]; c];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 07 2018, after Emeric Deutsch *)
PROG
(PARI) apply( A114638(n, s=0)={forpart(p=n, #p==vecsum(Set(p))&&s++); s}, [0..50]) \\ M. F. Hasler, Oct 27 2019
CROSSREFS
Cf. A116861 (number of partitions of n having a given sum of distinct parts).
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Feb 18 2006
EXTENSIONS
More terms from Emeric Deutsch, Mar 01 2006
STATUS
approved