[go: up one dir, main page]

login
A324516
Number of integer partitions of n > 0 where the maximum part minus the minimum part equals the length minus the number of distinct parts.
11
1, 1, 1, 2, 2, 2, 2, 5, 2, 8, 6, 6, 10, 14, 12, 20, 27, 23, 40, 40, 51, 62, 82, 88, 123, 135, 173, 197, 253, 285, 350, 419, 497, 594, 708, 855, 978, 1195, 1395, 1648, 1915, 2313, 2625, 3170, 3625, 4336, 4948, 5900, 6751, 7970, 9180, 10704, 12337, 14436, 16517
OFFSET
1,4
COMMENTS
The Heinz numbers of these integer partitions are given by A324515.
EXAMPLE
The a(8) = 5 through a(14) = 14 integer partitions:
(8) (9) (A) (B) (C) (D) (E)
(332) (32211) (433) (443) (4422) (544) (554)
(3311) (3331) (33221) (33321) (43222) (4442)
(32111) (4222) (44111) (422211) (52222) (5333)
(41111) (32221) (422111) (5211111) (422221) (43322)
(33211) (431111) (6111111) (433111) (44411)
(421111) (442111) (442211)
(511111) (4321111) (443111)
(5221111) (551111)
(5311111) (4322111)
(5222111)
(5411111)
(62111111)
(71111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Max@@#-Min@@#==Length[#]-Length[Union[#]]&]], {n, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 06 2019
STATUS
approved