OFFSET
1,5
COMMENTS
Let f(n) = A000265(n) be the odd part of n. Let p be the largest prime factor of k, and say k = p * m. Suppose that k is not a power of 2, i.e., p > 2, then f(k) = p * f(m). The iteration is k -> k + k/p = p*m + m = (p+1) * m. So, p * f(m) -> f(p+1) * f(m). Since for p > 2, f(p+1) < p, the odd part in each iteration decreases, until it becomes 1, i.e., until we reach a power of 2. - Amiram Eldar, Feb 19 2020
Any odd prime factor of k can be used at any step of the iteration, and the result will be same. Thus, like A329697, this is also fully additive sequence. - Antti Karttunen, Apr 29 2020
If and only if a(n) is equal to A005087(n), then sigma(2n) - sigma(n) is a power of 2. (See A336923, A046528). - Antti Karttunen, Mar 16 2021
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
Michael De Vlieger, Annotated fan style binary tree of a(n) labeling the index n and applying a color code where black represents a(n) = 0, red a(n) = 1, and magenta the largest value of a(n) for n = 1..16383.
FORMULA
From Antti Karttunen, Apr 29 2020: (Start)
This is a completely additive sequence: a(2) = 0, a(p) = 1+a(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
a(2n) = a(A000265(n)) = a(n).
If A209229(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(n+A052126(n)), or equally, 1 + a(n+(n/A078701(n))).
(End)
EXAMPLE
The trajectory of 15 is [15,18,24,32], taking 3 iterations to reach 32. So, a(15) = 3.
MATHEMATICA
a[n_] := -1 + Length @ NestWhileList[# + #/FactorInteger[#][[-1, 1]] &, n, # / 2^IntegerExponent[#, 2] != 1 &]; Array[a, 100] (* Amiram Eldar, Jan 16 2020 *)
PROG
(Magma) f:=func<n|n+n div p where p is Max(PrimeDivisors(n))>; g:=func<n| n eq 1 or Max(PrimeDivisors(n)) eq 2>; a:=[]; for n in [1..1000] do k:=n; s:=0; while not g(k) do s:=s+1; k:=f(k); end while; Append(~a, s); end for; a; // Marius A. Burtea, Jan 19 2020
(PARI) A331410(n) = if(!bitand(n, n-1), 0, 1+A331410(n+(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 29 2020
(PARI) A331410(n) = { my(k=0); while(bitand(n, n-1), k++; my(f=factor(n)[, 1]); n += (n/f[2-(n%2)])); (k); }; \\ Antti Karttunen, Apr 29 2020
(PARI) A331410(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A331410(1+f[k, 1])))); }; \\ Antti Karttunen, Apr 30 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ali Sada, Jan 16 2020
EXTENSIONS
Data section extended up to a(105) by Antti Karttunen, Apr 29 2020
STATUS
approved