OFFSET
1,12
COMMENTS
For all primes p: a(p) = 0 (not marked) and for k > 1 a(p^k) = 1.
a(1) = 0 and for n > 0 a(n) is the number of marks when applying the sieve of Eratosthenes where a stage for prime p starts at p^2.
If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence counts inferior prime divisors. - Gus Wiseman, Feb 25 2021
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
FORMULA
G.f.: Sum_{k>=1} x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020
a(A002110(n)) = n for n > 2. - Gus Wiseman, Feb 25 2021
EXAMPLE
a(33) = a(3*11) = 1, as 3^2 = 9 < 33 and 11^2 = 121 > 33.
From Gus Wiseman, Feb 25 2021: (Start)
The a(n) inferior prime divisors (columns) for selected n:
n = 3 8 24 3660 390 3570 87780
---------------------------------
{} 2 2 2 2 2 2
3 3 3 3 3
5 5 5 5
13 7 7
17 11
19
(End)
MAPLE
with(numtheory): a:=proc(n) local c, F, f, i: c:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then c:=c+1 else c:=c: fi od: c; end: seq(a(n), n=1..105); # Emeric Deutsch
MATHEMATICA
Join[{0}, Table[Count[Transpose[FactorInteger[n]][[1]], _?(#<=Sqrt[n]&)], {n, 2, 110}]] (* Harvey P. Dale, Mar 26 2015 *)
PROG
(PARI) { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[1, i]^2<=n, a++, break)); write("b063962.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009
(Haskell)
a063962 n = length [p | p <- a027748_row n, p ^ 2 <= n]
-- Reinhard Zumkeller, Apr 05 2012
CROSSREFS
Zeros are at indices A008578.
Dominates A333806 (the strictly inferior version).
The superior version is A341591.
The strictly superior version is A341642.
A033677 selects the smallest superior divisor.
A038548 counts inferior divisors.
A161908 lists superior divisors.
A207375 lists central divisors.
A217581 selects the greatest inferior prime divisor.
A341676 lists the unique superior prime divisors.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 04 2001
EXTENSIONS
Revised definition from Emeric Deutsch, Jan 31 2006
STATUS
approved