[go: up one dir, main page]

login
A238535
Sum of divisors d of n where d > sqrt(n).
35
0, 2, 3, 4, 5, 9, 7, 12, 9, 15, 11, 22, 13, 21, 20, 24, 17, 33, 19, 35, 28, 33, 23, 50, 25, 39, 36, 49, 29, 61, 31, 56, 44, 51, 42, 75, 37, 57, 52, 78, 41, 84, 43, 77, 69, 69, 47, 108, 49, 85, 68, 91, 53, 108, 66, 106, 76, 87, 59, 147, 61, 93, 93, 112, 78, 132
OFFSET
1,2
COMMENTS
Properties of the sequence:
a(n) = n if n is prime because sigma(n) = n+1 and A066839(n) = 1;
a(p^2) = p^2 if p is prime because sigma(p^2) = p^2+p+1 and A066839(p^2)= p+1 => A000203(p^2) - A066839(p^2)= p^2;
a(m) = 2*m if m = A182147(n) = 42, 54, 66, 78, 102, 114,... (numbers n equal to the sum of its proper divisors greater than square root of n).
LINKS
FORMULA
a(n) = A000203(n) - A066839(n).
EXAMPLE
a(8) = 12 because A000203(8)= 15 and A066839(8) = 3 => 15 - 8 = 12.
MATHEMATICA
lst={}; f[n_]:=DivisorSigma[1, n]-Plus@@Select[Divisors@n, #<=Sqrt@n&]; Do[If[IntegerQ[f[n]], AppendTo[lst, f[n]]], {n, 1, 200}]; lst
PROG
(PARI) a(n) = sumdiv(n, d, d*(d>sqrt(n))); \\ Michel Marcus, Feb 28 2014
(Sage)
def a(n):
return sum([d for d in Integer(n).divisors() if d>sqrt(n)]) # Ralf Stephan, Mar 08 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 28 2014
EXTENSIONS
Better name from Ralf Stephan, Mar 08 2014
STATUS
approved