OFFSET
1,4
COMMENTS
a(n) = sqrt(n) is a new record if and only if n is a square. - Zak Seidov, Jul 17 2009
a(n) = A060775(n) unless n is a square, when a(n) = A033677(n) = sqrt(n) is strictly larger than A060775(n). It would be nice to have an efficient algorithm to calculate these terms when n has a large number of divisors, as for example in A060776, A060777 and related problems such as A182987. - M. F. Hasler, Sep 20 2011
a(n) = 1 when n = 1 or n is prime. - Alonso del Arte, Nov 25 2012
a(n) is the smallest central divisor of n. Column 1 of A207375. - Omar E. Pol, Feb 26 2019
a(n^4+n^2+1) = n^2-n+1: suppose that n^2-n+k divides n^4+n^2+1 = (n^2-n+k)*(n^2+n-k+2) - (k-1)*(2*n+1-k) for 2 <= k <= 2*n, then (k-1)*(2*n+1-k) >= n^2-n+k, or n^2 - (2*k-1)*n + (k^2-k+1) = (n-k+1/2)^2 + 3/4 < 0, which is impossible. Hence the next smallest divisor of n^4+n^2+1 than n^2-n+1 is at least n^2-n+(2*n+1) = n^2+n+1 > sqrt(n^4+n^2+1). - Jianing Song, Oct 23 2022
REFERENCES
G. Tenenbaum, pp. 268 ff, in: R. L. Graham et al., eds., Mathematics of Paul Erdős I.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = n / A033677(n).
a(n) = A162348(2n-1). - Daniel Forgues, Sep 29 2014
MAPLE
A033676 := proc(n) local a, d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a, d) ; end if; end do: a; end proc: # R. J. Mathar, Aug 09 2009
MATHEMATICA
largestDivisorLEQR[n_Integer] := Module[{dvs = Divisors[n]}, dvs[[Ceiling[Length@dvs/2]]]]; largestDivisorLEQR /@ Range[100] (* Borislav Stanimirov, Mar 28 2010 *)
Table[Last[Select[Divisors[n], #<=Sqrt[n]&]], {n, 100}] (* Harvey P. Dale, Mar 17 2017 *)
PROG
(PARI) A033676(n) = {local(d); if(n<2, 1, d=divisors(n); d[(length(d)+1)\2])} \\ Michael B. Porter, Jan 30 2010
(Haskell)
a033676 n = last $ takeWhile (<= a000196 n) $ a027750_row n
-- Reinhard Zumkeller, Jun 04 2012
(Python)
from sympy import divisors
def A033676(n):
d = divisors(n)
return d[(len(d)-1)//2] # Chai Wah Wu, Apr 05 2021
CROSSREFS
Cf. A033677 (n/a(n)), A000196 (sqrt), A027750 (list of divisors), A056737 (n/a(n) - a(n)), A219695 (half of this for odd numbers), A207375 (list the central divisor(s)).
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved