[go: up one dir, main page]

login
A007289
Expansion of e.g.f. (sin 2x + cos x) / cos 3x.
(Formerly M1873)
14
1, 2, 8, 46, 352, 3362, 38528, 515086, 7869952, 135274562, 2583554048, 54276473326, 1243925143552, 30884386347362, 825787662368768, 23657073914466766, 722906928498737152, 23471059057478981762, 806875574817679474688, 29279357851856595135406
OFFSET
0,2
COMMENTS
Arises in the enumeration of alternating 3-signed permutations.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Matthew House, Table of n, a(n) for n = 0..406 (terms 0..200 from Vincenzo Librandi)
R. Ehrenborg and M. A. Readdy, Sheffer posets and r-signed permutations, Preprint, 1994. (Annotated scanned copy)
Richard Ehrenborg and Margaret A. Readdy, Sheffer posets and r-signed permutations, Annales des Sciences Mathématiques du Québec, 19 (1995), 173-196.
FORMULA
E.g.f.: (sin(2*x) + cos(x)) / cos(3*x).
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(k,j)*(k-2*j)^n*I^(n-k). - Peter Luschny, Jul 31 2011
a(n) = Im(2*((1-I)/(1+I))^n*(1+sum_{j=0..n}(binomial(n,j)*Li_{-j}(I)*3^j))). - Peter Luschny, Apr 28 2013
a(n) ~ n! * 2^(n+1)*3^(n+1/2)/Pi^(n+1). - Vaclav Kotesovec, Jun 15 2013
a(0) = 1; a(n) = 2 * Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n,2*k+1) * a(n-2*k-1). - Ilya Gutkovskiy, Mar 10 2022
MAPLE
A007289 := proc(n) local k, j; add(add((-1)^j*binomial(k, j)*(k-2*j)^n*I^(n-k), j=0..k), k=0..n) end: # Peter Luschny, Jul 31 2011
MATHEMATICA
mx = 17; Range[0, mx]! CoefficientList[ Series[ (Sin[2 x] + Cos[x])/Cos[3 x], {x, 0, mx}], x] (* Robert G. Wilson v, Apr 28 2013 *)
PROG
(PARI) my(x='x+O('x^66)); Vec(serlaplace((sin(2*x) + cos(x)) / cos(3*x))) \\ Joerg Arndt, Apr 28 2013
(Sage)
from mpmath import mp, polylog, im
mp.dps = 32; mp.pretty = True
def aperm3(n): return 2*((1-I)/(1+I))^n*(1+add(binomial(n, j)*polylog(-j, I)*3^j for j in (0..n)))
def A007289(n) : return im(aperm3(n))
[int(A007289(n)) for n in (0..17)] # Peter Luschny, Apr 28 2013
CROSSREFS
Row 3 of A349271.
Cf. A006873, A007286, A225109, A000191 (bisection), A000436 (bisection).
Sequence in context: A180390 A300696 A074599 * A099765 A246386 A096656
KEYWORD
nonn,changed
STATUS
approved