[go: up one dir, main page]

login
A007291
Series expansion for rectilinear polymers on square lattice.
(Formerly M4440)
0
7, 63, 254, 710, 1605, 3157, 5628, 9324, 14595, 21835, 31482, 44018, 59969, 79905, 104440, 134232, 169983, 212439, 262390, 320670, 388157, 465773, 554484, 655300, 769275, 897507, 1041138, 1201354, 1379385
OFFSET
2,1
REFERENCES
V. B. Priezzhev, Series expansion for rectilinear polymers on the square lattice, J. Phys. A 12 (1979), 2131-2139.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: (7 + 28x + 9 x^2 ) / ( 1 - x )^5.
a(n)=n(n-1)(11n^2-13n+3)/6 - T. D. Noe, Feb 09 2007
a(2)=7, a(3)=63, a(4)=254, a(5)=710, a(6)=1605, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Oct 17 2012
MATHEMATICA
Table[(n(n-1)(11n^2-13n+3))/6, {n, 2, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {7, 63, 254, 710, 1605}, 40] (* Harvey P. Dale, Oct 17 2012 *)
PROG
(PARI) a(n)=n*(n-1)*(11*n^2-13*n+3)/6 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Sequence in context: A167550 A304895 A161201 * A343137 A188226 A055405
KEYWORD
nonn,easy
AUTHOR
STATUS
approved