OFFSET
1,2
COMMENTS
In the 14th century, Levi Ben Gerson proved that the only pairs of terms which differ by 1 are (1, 2), (2, 3), (3, 4), and (8, 9); see A235365, A235366, A236210. - Jonathan Sondow, Jan 20 2014
Numbers n such that absolute value of the greatest prime factor of n minus the smallest prime not dividing n is 1 (that is, abs(A006530(n)-A053669(n)) = 1). - Anthony Browne, Jun 26 2016
REFERENCES
G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 78.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..500
Boris Alexeev, Minimal DFAs for testing divisibility, arXiv:cs/0309052 [cs.CC], 2003.
Jung-Chao Ban, Wen-Guei Hu, and Song-Sun Lin, Pattern generation problems arising in multiplicative integer systems, arXiv preprint arXiv:1207.7154 [math.DS], 2012.
Lukas Spiegelhofer, Collisions of the binary and ternary sum-of-digits functions, arXiv:2105.11173 [math.NT], 2021.
Eric Weisstein's World of Mathematics, Pillai's Theorem.
FORMULA
Sum_{n>=1} 1/a(n) = 5/2. - Amiram Eldar, Jun 03 2022
a(n)^(1/n) tends to 3^(log(2)/log(6)) = 2^(log(3)/log(6)) = 1.529592328491883538... - Vaclav Kotesovec, Sep 19 2024
MAPLE
A:={seq(2^n, n=0..63)}: B:={seq(3^n, n=0..40)}: C:=sort(convert(A union B, list)): seq(C[j], j=1..39); # Emeric Deutsch, Aug 03 2005
MATHEMATICA
seqMax = 10^20; Union[2^Range[0, Floor[Log[2, seqMax]]], 3^Range[0, Floor[Log[3, seqMax]]]] (* Stefan Steinerberger, Apr 08 2006 *)
PROG
(Haskell)
a006899 n = a006899_list !! (n-1)
a006899_list = 1 : m (tail a000079_list) (tail a000244_list) where
m us'@(u:us) vs'@(v:vs) = if u < v then u : m us vs' else v : m us' vs
-- Reinhard Zumkeller, Oct 09 2013
(PARI) is(n)=n>>valuation(n, 2)==1 || n==3^valuation(n, 3) \\ Charles R Greathouse IV, Aug 29 2016
(PARI) upto(n) = my(res = vector(logint(n, 2) + logint(n, 3) + 1), t = 1); res[1] = 1; for(i = 2, 3, for(j = 1, logint(n, i), t++; res[t] = i^j)); vecsort(res) \\ David A. Corneth, Oct 26 2017
(PARI) a(n) = my(i0= logint(3^(n-1), 6), i= logint(3^n, 6)); if(i > i0, 2^i, my(j=logint(2^n, 6)); 3^j) \\ Ruud H.G. van Tol, Nov 10 2022
(Python)
from sympy import integer_log
def A006899(n): return 1<<k if integer_log(m:=3**(n-1), 6)[0]<(k:=integer_log(3*m, 6)[0]) else 3**integer_log(1<<n, 6)[0] # Chai Wah Wu, Oct 01 2024
CROSSREFS
KEYWORD
nonn,easy,nice,changed
AUTHOR
EXTENSIONS
More terms from Reinhard Zumkeller, Jun 22 2003
STATUS
approved