[go: up one dir, main page]

login
A005185
Hofstadter Q-sequence: a(1) = a(2) = 1; a(n) = a(n-a(n-1)) + a(n-a(n-2)) for n > 2.
(Formerly M0438)
246
1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11, 12, 12, 12, 12, 16, 14, 14, 16, 16, 16, 16, 20, 17, 17, 20, 21, 19, 20, 22, 21, 22, 23, 23, 24, 24, 24, 24, 24, 32, 24, 25, 30, 28, 26, 30, 30, 28, 32, 30, 32, 32, 32, 32, 40, 33, 31, 38, 35, 33, 39, 40, 37, 38, 40, 39
OFFSET
1,3
COMMENTS
Rate of growth is not known. In fact it is not even known if this sequence is defined for all positive n.
Roman Pearce, Aug 29 2014, has computed that a(n) exists for n <= 10^10. - N. J. A. Sloane
a(n) exists for n <= 3*10^10. - M. Eric Carr, Jul 02 2023
REFERENCES
B. W. Conolly, "Meta-Fibonacci sequences," in S. Vajda, editor, Fibonacci and Lucas Numbers and the Golden Section. Halstead Press, NY, 1989, pp. 127-138.
R. K. Guy, Unsolved Problems in Number Theory, Sect. E31.
D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 138.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Wiley, 1989, see p. 129.
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.
LINKS
T. D. Noe and N. J. A. Sloane, Table of n, a(n) for n = 1..10000
Altug Alkan, On a conjecture about generalized Q-recurrence, Open Mathematics, Vol. 16 (2018), pp. 1490-1500.
Altug Alkan, Nathan Fox, and Orhan Ozgur Aybar, On Hofstadter Heart Sequences, Complexity, 2017.
B. Balamohan, A. Kuznetsov, and S. Tanny, On the behavior of a variant of Hofstadter's Q-sequence, J. Integer Sequences, Vol. 10 (2007), #07.7.1.
Thomas Bloom, Problem 422, Erdős Problems.
Paul Bourke, Hofstadter "Q" Series.
Paul Bourke, Hofstadter "Q" Series. [Cached copy, pdf only, with permission]
Paul Bourke, Listen to first 300 terms of this sequence. [Cached copy from the Hofstadter "Q" web page, with permission]
Joseph Callaghan, John J. Chew III, and Stephen M. Tanny, On the behavior of a family of meta-Fibonacci sequences, SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See p. 794.
Jonathan H. B. Deane and Guido Gentile, A diluted version of the problem of the existence of the Hofstadter sequence, arXiv:2311.13854 [math.NT], 2023.
Nathaniel D. Emerson, A Family of Meta-Fibonacci Sequences Defined by Variable-Order Recursions, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.8.
Nathan Fox, Linear-Recurrent Solutions to Meta-Fibonacci Recurrences, Part 1 (video), Rutgers Experimental Math Seminar, Oct 01 2015. Part 2 is vimeo.com/141111991.
Nathan Fox, A Slow Relative of Hofstadter's Q-Sequence, arXiv:1611.08244 [math.NT], 2016.
Nathan Fox, A New Approach to the Hofstadter Q-Recurrence, arXiv:1807.01365 [math.NT], 2018.
S. W. Golomb, Discrete chaos: sequences satisfying "strange" recursions, unpublished manuscript, circa 1990 [cached copy, with permission (annotated)].
J. Grytczuk, Another variation on Conway's recursive sequence, Discr. Math. 282 (2004), 149-161.
R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986.
R. K. Guy, Some suspiciously simple sequences, Amer. Math. Monthly 93 (1986), 186-190; 94 (1987), 965; 96 (1989), 905.
D. R. Hofstadter, Eta-Lore. [Cached copy, with permission]
D. R. Hofstadter, Pi-Mu Sequences. [Cached copy, with permission]
D. R. Hofstadter and N. J. A. Sloane, Correspondence, 1977 and 1991.
D. R. Hofstadter, Curious patterns and non-patterns in a family of meta-Fibonacci recursions, Lecture in Doron Zeilberger's Experimental Mathematics Seminar, Rutgers University, April 10 2014; Part 1, Part 2.
Abraham Isgur, Mustazee Rahman, and Stephen Tanny, Solving non-homogeneous nested recursions using trees, Annals of Combinatorics 17.4 (2013): 695-710. See p. 695. - N. J. A. Sloane, Apr 16 2014
A. Isgur, R. Lech, S. Moore, S. Tanny, Y. Verberne, and Y. Zhang, Constructing New Families of Nested Recursions with Slow Solutions, SIAM J. Discrete Math., 30(2), 2016, 1128-1147. (20 pages); DOI:10.1137/15M1040505.
K. Pinn, Order and chaos in Hofstadter's Q(n) sequence, Complexity, 4:3 (1999), 41-46.
K. Pinn, A chaotic cousin of Conway's recursive sequence, Experimental Mathematics, 9:1 (2000), 55-65.
K. Pinn, A Chaotic Cousin Of Conway's Recursive Sequence, arXiv:cond-mat/9808031 [cond-mat.stat-mech], 1998.
N. J. A. Sloane and Brady Haran, Amazing Graphs III, Numberphile video (2019).
A. M. M. Sharif Ullah, Surface Roughness Modeling Using Q-Sequence, Mathematical and Computational Applications, 2017.
Eric Weisstein's World of Mathematics, Hofstadter's Q-Sequence.
EXAMPLE
a(18) = 11 because a(17) is 10 and a(16) is 9, so we take a(18 - 10) + a(18 - 9) = a(8) + a(9) = 5 + 6 = 11.
MAPLE
A005185 := proc(n) option remember;
if n<=2 then 1
elif n > procname(n-1) and n > procname(n-2) then
RETURN(procname(n-procname(n-1))+procname(n-procname(n-2)));
else
ERROR(" died at n= ", n);
fi; end proc;
# More generally, the following defines the Hofstadter-Huber sequence Q(r, s) - N. J. A. Sloane, Apr 15 2014
r:=1; s:=2;
a:=proc(n) option remember; global r, s;
if n <= s then 1
else
if (a(n-r) <= n) and (a(n-s) <= n) then
a(n-a(n-r))+a(n-a(n-s));
else lprint("died with n =", n); return (-1);
fi; fi; end;
[seq(a(n), n=1..100)];
MATHEMATICA
a[1]=a[2]=1; a[n_]:= a[n]= a[n -a[n-1]] + a[n -a[n-2]]; Table[ a[n], {n, 70}]
PROG
(Scheme): (define q (lambda (n) (cond ( (eqv? n 0) 1) ( (eqv? n 1) 1) ( #t (+ (q (- n (q (- n 1)))) (q (- n (q (- n 2)))))))))
(MuPAD) q:=proc(n) option remember; begin if n<=2 then 1 else q(n-q(n-1))+q(n-q(n-2)) end_if; end_proc: q(i)$i=1..100; // Zerinvary Lajos, Apr 03 2007
(PARI) {a(n)= local(A); if(n<1, 0, A=vector(n, k, 1); for(k=3, n, A[k]= A[k-A[k-1]]+ A[k-A[k-2]]); A[n])} /* Michael Somos, Jul 16 2007 */
(Haskell)
a005185 n = a005185_list !! (n-1)
a005185_list = 1 : 1 : zipWith (+)
(map a005185 $ zipWith (-) [3..] a005185_list)
(map a005185 $ zipWith (-) [3..] $ tail a005185_list)
-- Reinhard Zumkeller, Jun 02 2013, Sep 15 2011
(C)
#include <stdio.h>
#define LIM 20
int Qa[LIM];
int Q(int n){if (n==1 || n==2){return 1; } else{return Qa[n-Qa[n-1]]+Qa[n-Qa[n-2]]; }}
int main(){int i; printf("n\tQ\n"); for(i=1; i<LIM; i+=1){printf("%d\t%d\n", i, Q(i)); Qa[i]=Q(i); }printf("\n"); } // Gonzalo Ciruelos, Aug 01 2013
(Magma) I:=[1, 1]; [n le 2 select I[n] else Self(n-Self(n-1))+Self(n-Self(n-2)): n in [1..90]]; // Vincenzo Librandi, Aug 08 2014
(Scheme)
;; An implementation of memoization-macro definec can be found for example in: http://oeis.org/wiki/Memoization
(definec (A005185 n) (if (<= n 2) 1 (+ (A005185 (- n (A005185 (- n 1)))) (A005185 (- n (A005185 (- n 2)))))))
;; Antti Karttunen, Mar 22 2017
(Sage)
@CachedFunction
def a(n):
if (n<3): return 1
else: return a(n -a(n-1)) + a(n -a(n-2))
[a(n) for n in (1..70)] # G. C. Greubel, Feb 13 2020
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def a(n):
if n < 3: return 1
return a(n - a(n-1)) + a(n - a(n-2))
print([a(n) for n in range(1, 75)]) # Michael S. Branicky, Jul 26 2021
CROSSREFS
Cf. A081827 (first differences).
Cf. A226244, A226245 (record values and where they occur).
See A244477 for a different start.
Sequence in context: A266350 A123579 A166493 * A119466 A100922 A047785
KEYWORD
nonn,nice,look
AUTHOR
STATUS
approved