e

7

({ annenel (990 o
\ /j /,f\ 1
\m_______,_,_,_._m’“}’ ‘ \5

. " WO o
e !

DISCRETE CHAOS: A

SEQUENCES SATISFYING "STRANGE" RECURSIONS

:_{tU
Solomon W. Golomb -/'7

(¥

Communication Sciences Institute
Dept. of Electrical Engineering Systems
University of Southern California "
Los Angeles, CA 90089-0272" R MG

2565 'w\:“ﬂ

1. Historical Summary

Analogous to the Fibonacci Sequence, defined by fi=f.=1, f, =fn_1-+ Fnoa
¥ n>2, D.Hofstadter (in [1]) defined a sequence ({g,] by ¢g;=¢,=1,
Gn = Gng,, T Qnq, » Which he called a "strange” recursion, in that the subscripts depend on
terms in the sequence itself. He asserted that this sequence has no disccm;i(blc regularities,

. and’ this remains very nearly true.

A somewhat better behaved sequence {c, }, proposed by J.H. Conway (private communi-

cation) is defined by ¢y =c2=1, ¢, = ¢4, + ¢ - Unlike {g,]), the sequence {c¢,]} is

monotone non-decreasing, and in fact, d, = ¢, — ¢,. is resmicted to the values 0 and 1.

o

Regularities include: n 2 ¢, 2 % for all n, with ¢, = -g- iff n = 2%, k21. Evenso, (d,} is

a good "pseudo-random” binary sequence, and appears to approximate "G -randomness” as

defined in [2].
S —
Golomb proposed the recursion a, = @,.,_, with a choice of initial conditions, as a very

simple example of a "strange” recursion. U. Cheng showed [3] that even in this very simple

case, some quite unusual and "strange” things can happen.
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. The design of virtually all modern digital computers makes it easy to perform arithmetic
‘bﬁ.in&_iqcs, and hence to carry out the calculation of sequences which are well-defined by a

“strange" recursion and appropriate initial conditions. Some of these sequences are likely to

be useful in applications where "pseudo-random” sequences of integers are required.

" “The, theory of "strange” recursions may be regarded as the discrete case of the theory of

4

"strange attractors,” which has become very fashionable in the last few years, and which is

i

also referred to as the theory of "chaos" [3].



2. Classical Recursions

The archetype of classical recursions is the Fibonacci sequence, defined by -
fo=Faat oo [1=F2=1L | (1)
The first forty terms of this sequence are given in Table 1, together with two differen:

"closed-form" expressions for the n* term of the sequence.

In the nineteenth century, Edouard Lucas in France described the analysis and properties

of sequences satisfying any "linear recurrence” of any degree £ over the real number field:
k
@, = 3, Cja,_j. (2)
j=l

The behavior of such linear recursions has also been studied as over finite fields [4], and
over polynomial rings [5]. Classes of nonlinear recursions over the real numbers have been

studied in [6] and [7], and over finite fields in [4].



£, = fn—l-t'fn-'Z' fl " f2 =1

n fn

1 1

2 \

3 2

4 3

5 5

? 13 FIBONACCL'S SEQUENCE

8 21

9 34

10 55 ; __]._{(l+/§)n_(l-@)n}'

12 ¥ A

13 233

14 377

15 610

16 987 I

17 1,597 L

18 2,584 1535['5"]

19 4,181
20 6,763
21 10,946
22 17,711 ) 2
23 28,657 (e ) = DUED+D(EL),
24 46,368
iZ 12?'233 {Dz+n-1}(fn) z (0).

¥

27 196,418
28 317,811 N “‘_13/3
29 514,229 3

30 832,040

31 1,346,269
32 2,178,309
gz g'gg;’g;g Other initial conditions will produce other sequences
gg 12'3%;';22 with the same characteristic equation, and with the

H H -

37 24,157,817 " " . -1-7% i

38 39,088,169 largest eigeavalue” ([A)l | 7 | 1.618...)
23 133'%22'326 determining the asymptotic race of growth.

TABLE 1



3. Hofstadter’s Sequence {g, }

The first 280 terms of Hofstadter’s sequence {g,} arc shown in Table 2. Hofstadter’s
sequence has the following properties:
1. Unless 1< g, < n for all n 21, the sequence will not be well-defined. It is almost cer-

tainly true that 1 € g, Sn forall n 2 1, but no proof of this has yet been given.

2. The sequence is very sensitive to its initial conditions, and the given sequence is the only '

HMI‘W’ ? one which neither "blows up" (by becoming undefined) nor degenerates into a rather ‘ k
heean pr° o

- deterministic pattern, for the given recursion. (The subscripts can all be translated a uni--

F N
A

form amount without affecting the sequence itself.)

Pkt

3. With @,=3,0,=2,03 =1, and Hofstadter’s recursion, the resulting sequcr;;r:e 1s At

' Mc with a quasi-period of 3:

n Qn n Qn
1| 3 Qpyp = 3 | 13 | 3
2 2 . 14 | 14
3 1 Qypep = 3KH2 15
4 3 " e 16 3
5 5 Qgy = %2 17 | 17
6 4 18 16
7 j 19 3
8 8 20 20
9 7 (It is easy to prove that 21 19
10 3 this sequence satisfies the 22 3
11 ‘1l recursion, by-induction.) 23 23
12 10 . 24 22

q
4, If there is a limiting value / such that lim -;"- =1, thenl = A
n—yo0
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Proof. Assume ! exists, 0 <! £ 1. Then for very large n, the recursion is arbitrarily
well approximated by
In = (-l (n=1)) + [ (n=1 (n-2)) | g A
n = (=l (n-1)) + fn—I (n~2)) . o ¥

|

In-1)+I@n-2)=n, 2nl - 4-"’-{::,
. and since n =0, [ = V2.

Apparent tegularities in Hofstadter’s sequence include:

q 4=3=2+1 g7=5 qa=2 q197=128 qs5=3.
qg=5=4+1 q15=10 }| g¢=4 :q334=256 q 10=6-
q16=9=8+1 g31=20 || 91278 q76=512 q20=12.
: BUT
Q32=1-7=16+1 q 63=40 q 24316 q 1536<1024 EUT

q 64=33=32+1 BUT Q48=32 :Q3072<2048 q 40=22.

BUT: g 93=64. 412768 || 996=64 461444096
"?256" 128-5
However, none of these regularities persist!

Statistical "regularities”: Pr{lg, — 31> n) — 0 in the sense that, for fixed N >0, the

fraction of the set of integers [10%,10%*1] for which lg, — %I > 1) appears to go to 0 as

. ko, Statistics have been studied for n < 10°, Nothing has been proved.

Note the swings and oscillations around n = 325 Bg s = Qs = =49t =
PN N

06, gi92 = 128, dij93 = 72.

The apparent regularitics noted above, which do not persist, are strongly reminiscent of

the "chaos” in the theory of "strange attractors” [8].
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=t > —
n qn—qn_l qn-qn_z' n22 9T L.
v qn n qn n qn .n qn ! n ql‘l n qﬂ Ii n i qn i
1 T oL | 23| 8L | 44 | 12t | 724 161} &2 201y 106 i 251 | 132
2 11l a2 | 231 82 | 43 | 122 | seff 162 85| 2024 1243 242° 113
31 2143 | 26| 83| 43 | 123 | el] 163 | 84 ) 203} 82 263 | 133
& 3|46 26l 86 46 | 124 | 78] 164 84 || 204 | 10§ 2441 123
5 3fas | 24 85| 46 |l 125 | s7|f 165 88 205 LLL| 2451 118
el 4 llas | 2ol 86 | 45 || 126 | 71i| 166 | &3 206 | 108 | 246 125
71 sila7 | 26| 87| a7 | 127 | 68}) 167 | 87| 207 | 118 2474 121
al 5148 | 32 88 ] 47 || 128 | 64} 168y 88 I-zoa 104 § 248 | 129
ol 6 |49 | 26| 89| 46 | 129 | 63} 169| 87 . 209 | 108 | 249 } 122
101 6150 25| 90| 48 | 130} 73| 170} 86 | 210 | 106 i 250 | 136
1] 6 ilst | 30l 9r] 48| 131 | €3]] 171 ] 90 | 200 | s 25t | 129
12| 8 lis2] 28] 92| 48 | 132 | 7i)| 172 88 | 212} 1044 252 ] 116
131 8 (53| 26{ 93] 48 | 133} 72| 173 | 87§ 213} 1l 253 | 149
14 g 15a | 30l 96| 48 [ 136 | 72f| 174 ] 9z [ 2la ) 10940 254 | 137
1s | 101551 30 95| 48 | 135 | 8o} 175 | 90 | 215 ¢ 100 2554 120
16| oaltse| 28l 96 | 64 {136 | 61l 176 | 91 || 216 | 109 3 25A ) 123
17 | 10 ls7 | 3zl} 97 | 4l || 137 ¢ 7iy 177 2 o217 | 120 257 42
18| 11 ftss [ 30 98 | 521 138 | 77f 178 | 92 | 218 | 112 | 258 | 12s
19 | 11 |{s9 | 32{f 99 | s4 || 139 | 65} 179 | 94 | 219 108 § 259 | 107
20 | 12 |60 | 32]i1o0 | 56 |t 160 | 8O} 180 | 92 y 220 1B || 260 | 139
21 | 12 1 | 3z |l1o1 | 48 4 el | 7ty 181 93 [ 221 106 | 261 | 138
22 1 12 |l ez | azljtoz | s& | 142 | o9j| 182 94§ 222% 105 & 262 | 139
23 | 12 || 63 | 40103 ] 54 || 1&3 [ 77} 183 | 94§ 223 | 130 | 263 | 135
26 | 16 lea | 33]l104 | 50 §j vas | 7s|] 184 | 96§ 224 } 110§ 2651 120
55 | 14 1l es | 31}l1os | 60 [l 145 | 73|| 185 | 94 § 225 | L&} 2A5 1 146
26 | 14 |l 66 | 38]j10o6 | 52 || ra6 | 77|l 185§ 95 | 226 ) I3 ‘ 265 | 135
97 | 16 1l 67 | 35 |t107 | 54 | 147 | 79| 187 96 || 227 | 112} 267 | 143
28 | 16 || 68 | 33||108 | 58 | 148 | 76l 188 | 96 | 218 107 | 268 1 129
29 1 16 1169 | 391|109 | 60 |t 169 | 80| 189 | 96 | 229 120 |i 263 | 151
30 | 16 1l 70 | 40}j110 [ 53 [| 150 1 79| 190 | 96 1 230 s f 270 | 133
31 | 20 || 71§ a7fl1ie | 6o | 15t | 7s| 191 | 96 i 231y 122 271 | 135
32 1 17 || 72 | 3s|{riz | 60 || 352 | s2ff 1oz j128 | 232 | 121 |} 272 | 136
33 ) 17 |73 | 4o f|113 | 52 |l 1s3 | 77if 193 | 72 ) 233 120 i 273 | 148
3x 120 1176 | 39|[11s | 627 156 | 80y 196 | 96 ~234 | 116 fi274 | 148
35 | 21 {175 | 40f{115 | 66 || 155 | 80fy 195 | 115 [ 235 | 138 || 275 | 135
26 | 19 [} 76 | 39|l116 | 55 |l 156 | 78| 196 |100 216 | 110 || 278 | 144
37 | 20 | 77 | 421|117 | 62 || 157 | 83{f 197 | &4 237 | 122 4 277 | 143
33 | 22 || 78 | 4o lt11s | 68 || 158 | 83j| 198 | ll4 4 235 | 119 || 278 | 152
36 | 21 1179 | arfjrie | 62 |l 159 | 78] 199 110 || 239 } 120 | 279 | 129
20 | 22 {80 | 43|l120 | 58 |j 160 | 85| 200 | 93 Jf 240 | 1304 280 | 139

-

TABLE 2

HOFSTADTER':
SEQUENCE |




4. Conway’s Sequence {c,}

The first 160 terms of Conway’s sequence {c, } are given in Table 3. This sequence has

the following provable regularities:

Properties of Conway’s Sequence {c,}

1.

{c,} is monotonic non-decreasing.
In fact, ¢, 41 — ¢, = 0 or 1, for all n.
Fact 2 is proved by induction, using the further fact that: of the two summands which

combine to form ¢, .y, one of them is one of the two summands for ¢,, and the other is

the other summand of ¢, with its argument advanced by 1. To illustrate:

€100 = C561C100-56 = CsgtCay = 31426 =57,
Hence, €19 = Cs7+C101-57 = Cs7+Cas = 31426 = 57,
and Clop = Cs57+C102-57 = Cs7HC4a5 = 31+26 = 57.
{d,) = {cps1—Cpn ) is @ reasonable pseudo-random binary sequence, especially in view of

Fact 5.

¢, 2 % for all n 21, with ¢, = 3 iff n=2F, k=1,2,3,4,5,....

'(d,) has arbitrarily long runs of 0’s (eg. terminating at the values n=2%, {d,) has 2

k-1 consecutive 0’s; followed by 2k consecutive 1's) and of 1’s.

c
lim — exists and equals ¥4. (The second part follows from Fact 5.)

n-3oe I

Formulas can be given for ¢, by relating n to the "nearest” power of 2.
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9. The sequence {d,} seems to closely approximate "G -randomness"”, as defined in [2],

based on the "randomness properties” of Chapter 3 of [4].

o~

10. In ,Ihe\tenninology of "strangc attractor” theory, Conway 5 sequencc {c,) is tamely

a- -‘
Vi

7 chaonc \ while Hofstadter’s sequence {qn} is '(ﬂdly chaonC" \) §ee I-'bf;@ {? .




2 1 H . 1+ =

CONWAY'S SEQUENCE: n Comc +c » € Cq

n-1 n-1

(o n o n o n c
u - 0 n n
1 1 41 24 a1 46 121 63
2 1 42 24 82 47 122 64
k| 2 43 25 83 47 123 64
4 2 44 26 B4 48 124 64
3 3 45 26 85 48 125 6%
6 4 46 27 86 48 126 €4
7 4 47 27 87 49 127 64
8 4 L8 217 88 50 128 64
9 5 49 28 89 51 129 65
10 6 50 29 g0 51 130 66
il 7 51 29 9l 52 131 67
12 7 52 30 92 53 132 63
13 8 53 30 93 53 133 £9
14 g 54 30 94 54 134 70
15 8 55 3l 95 54 135 7
16 8 56 31 96 54 136 71
17 9 57 il 97 35 137 72
18 10 58 3l 98 56 138 13
19 11 59 32 99 56 139 74
20 12 60 32 100 57 140 75
21 12 61 32 101 57 141 76
22 13 62 32 102 57 142 76
23 14 63 kY 103 58 143 717
24 14 64 32 104 5€ 144 78
25 15 65 33 105 58 145 19
26 15 66 34 106 58 146 80
27 15 67 35 107 59 147 80
28 16 68 36 108 60 148 g1
29 16 69 37 || 109 60 149 82
30 16 70 38 110 6l 150 81
31 16 71l 38 111 61 151 83
32 16 12 39 -|] 112 6l 152 B4
33 17 13 40 113 62 153 &5
34 i8 74 41 114 62 154 85
35 19 75 42 115 62 155 86
36 20 76 42 116 62 156 86
37 21 11 43 117 63 157 36
38 21 78 44 118 63 158 87
39 22 79 45 119 63 159 88
40 23 80 45 120 63 160 &9

TABLE

3
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5. The Recursion g, =4a,_, ,

This simple-looking one-term “strange" recursion hides & great wealth of behaviors,
p g

which depend on the initial conditions which are used. Three simple examples are shown

below,
I, a, | 2 1S PPV BN 11, - (3, |2 <——(transtent)
a, L 2 2 a, 3
aq 2 a, b —3_})
3 1 R %
ag ao-? & 5 3g j
———— ag 5 3¢ 2
3 2 2y
34 5 ag 3
ag 2 a9 2>
3g S 210 3
210 5\ %11 3)
a5, 2 8, ._.2._

Observations:

1. Not all initial conditions lead to well-defined sequences.

2. If the sequence is well-defined from the initial conditions, it will be ultimately periodic;

and it can never have any term which did not already appear as a value among the initial

conditions.

3. Proof of the "ultimately pericdic” property:
Let {(a;.aq . . .,a,,) be a "proper initial condition”, so that {a,) is defined for all

n 21, The possible values for any a, are the distinct integers (say k of them} in the set
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{apay -...a,). Let m be the largest of these. Then a, (for n>ng) is uniquely

determined by the m-tuﬁlc (@ @pmsls - - - +8y-1). The total number of m-tuples of
v
k distinct integers is }1/ Hence there are integers ny and p, 1 <n; <k™+m, and

1<p £k™,such thata, = a,,_‘p' for all n >n;.

Constructing Cycles with Long Periods, for a, =a,_,_ |
FIRST EXAMPLES, for p=9.
First Step: (9,9.9.9,9,9,9,9.9). p=1, m=9, k=1
Second Step: (9,9,3,9,9,9,9,9,9). p=9, m=9, k=2.
Third Step: (6,9,3,6,9,9.9,9.9). p=9, m=9, k=3.
Fourth Step:  (6,9,3,69,4,39,6). p=9, m=9, k=4.
Question: Can the period be bigger than the biggest term in the sequence?

Answer: Yes! (due to Unjeng Cheng [3]).

SECOND EXAMPLES, p 29.

#1. (693,6,33:69,6,63.6). p=12, m=9, k=3. Compare the "first half" and "sccond half" of
the cycle!

#2. (3.12,3,12,5,4,8,4;8,12,2,12,3,4,2,4). p=16, m=12, k=4.

#3. (183,3:18,3,3;18,21,18;18,3,1818,21,18,18,3,18;18,3,18;18,3,18,18,21,3;
18,3,3;18,21,18;18,3,18;18,3,18;18,3,18;18,21,81;18,3,18;18,21;3;18,3,3).
p=54, m=21, k=3.

In general, U. Cheng showed [3] that examples exist which make p/m arbitrarily large.
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6. "Strange" Recursions with Known Solutions T R
T
The simplest "strange” recursion is (1] 248 B sy gy g 7
e el W ufu) e e e
Ry, = Un> 3 & K : ' o

for which the most general solution is given as-follows: -

1

ILet R be any non-empty subset of the positive integers. If neR, require u,, = n. For

each n€R, arbitrarily pick a value r, from the set R, and define u, =r,.

It is easy to prove that this i_s the general solution. As an example, let R = (2,7,10}, and

use these values as the range of u(n) described above. For example, we could set

ﬂ.__ uu n ._...!'.‘.ﬂ. .
: 1. 7 71 7

2| 2 8| 7

3] 10 91 2

4 |10 10 | 10

51 2 111 2

6 | 7 121 2

We then vcﬁf_y:

n=LT=uy=u, =u;=7
n=2,2=uy=u, =uy=2
n=310=us=u, =up=10
n=410=us=u, =u;=10

efc.

— e

From this starting point, progressively more complicated "strange" recursions can be



investigated.

For example, for any positive integer k, there is a "strange” recursion
p Y

“"‘-":-‘h_

As initial condition, set b; =1, and b2—3 1f k 1 but b2—2 for all k>1. Then the
e

!

%..
kY
¢

. W Tey 43T 8, g The + o .
sequence given by % | - ' Phe T ot v The g b e
/ ﬁ-ib*r"/}-m ’r e v\fFL L ’v"-»f; b'f aﬁj&/b’ﬁ"éw
: i ;
bn(“: fholy v bpng sl

. 4
Fzg Y ™ /}f‘ﬁlﬁ.(fz?b/[—‘i"lj ‘F}'lﬁf)

satisfies the recursion (3), where o) is the positive root of x*(k—2)x—k =0, namely

@ 2-k+VK%44
o=

, and [y] denotes the greatest integer <y.

Although (4) is a solution of the recursion (3), it is not the golution. It appears to
\& i S

% \ be the only monotonically increasing solution, however. Conway’s sequence, which is mono-

&
‘}f

1"' tone non- dccrcaglg, is a close relative of these sequences, but is uniquely specified by its
\%bﬁ&% ’u"’w“ et ol
recursion and a simplé initial condition. No finite}Initial condmon is sufficient to uniquely

specify the solution sequence of (3) for any givé’ﬁ{ A. Fraenkel (private communication)

suggested the study of the sequences given by (4) in this context. “; e nlie \@ wisdowm , wer Zpap
el

A recursion which has a much simpler solution than one might expect from its “strange”

: Ittt o LT

appearance is ot uf v wed

gn = gn—g,_{*"l' g1+ L. L (5)

There is a uniquely determined solution sequence for (5), withg;=1,8,=83= 2,84=85=

g¢ = 3, and in general each positive integer k& occurring successively k times as the value of

,

=
AR
| P —— i

- —

.
= - PP AL T Sl
Garleny 07 undl

i(;:—'- . _ !.:/..,; g

]
i
7
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specifically where

1 LA r ‘~"
_ gn2 + &n o \f}‘“ﬂ. { Fi“" R
2 BN
From this, we have the quadratic equation
2 -
gl +8,—2n =0,
so that for all "triangular” values of n,
_ —14V8n+1
g-'l - 2 !
and it is easy to show that for general n, .
I
=L Ty T ST
- | {¥8n K1 - -
o 2 ' .o SR P T I
Z; ' ‘ o
where [y] denotes the greatest integer not exceeding y. o
(7R - R

This furnishes an_important example of a recursion which looks as "strange" as several

others we have considered, but where the resulting sequence is completely regular and
predictable. It is a challenging unsolved problem to categorize those "strange” recursions

which have well-behaved, closed-form solutions.




16

n g(n) n g(n)
1 i 16 6
2 2 . 17 6
3 2 18 6
4 3 19 6
5 3 20 6
6 3 21 6
7 4 22 7
8 ". 23 7
9 4 24 7
10 4 25 7
11 5 26 7
12 3 27 7
13 5 | 28 7
14 5 29 8
15 5 30 8
TABLE &

The Sequence g = gn_gn_ +1,

n g{n)
3l 8
32 8
33 8
34 8
35 B
36 8
37 9
38 9
39 9
40 £
41 9
42 9
43 9
64 9
45 9




- 17 -

Rgf erences

1
, 2
* [3]
s [4]
/15]

7 [6]

7 7]

s [8]

D. Hofstadter, Godel, Escher, Bach, An Eternal Golden Braid, Random House, New
York, 1979.

H. Beker and F. Piper, Cipher Systems, the Protecnon of Communications, John Wiley
and Sons, 1982.

U. Cheng, "Properties of Sequences,” Ph.D. Dissertation, USC Dept. of Electrical
Engineering, 1981.

S.W. Golomb, Shift Register Sequences Holden-Day, Inc., 1967. Revised edition,
Aegean Park Press, 1982.

S.W. Golomb and A, Lempel, "Scccmd Order Polynomial Recursions," SIAM Journal on
Applied Mathematics, vol. 33, no. 4, December 1977, pp. 587-592.

S.W. Golomb, "On Certain Nonlinear. Recumng chucnccs American Math. Monthly,
vol. 70, no. 4, April 1963,  ethoia L“f a0

J.N. Frankiin and S.W. Golomb "A Funcuon—Thcorct1c Approach to the Study of Non-
linear Recurring Sequences,” Pacific Journal of Mathematics, February 1975.

J. Gleick, CHAOQS, Penguin-Viking, 1988,
———

A

o






