[go: up one dir, main page]

login
A002547
Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)*A002805(n)).
(Formerly M4765 N2036)
6
1, 1, 11, 5, 137, 7, 363, 761, 7129, 671, 83711, 6617, 1145993, 1171733, 1195757, 143327, 42142223, 751279, 275295799, 55835135, 18858053, 830139, 444316699, 269564591, 34052522467, 34395742267, 312536252003, 10876020307, 9227046511387, 300151059037
OFFSET
1,3
COMMENTS
Numerators of coefficients for numerical differentiation.
REFERENCES
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..2000 (first 700 terms from Alois P. Heinz)
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Harmonic Number
FORMULA
G.f.: (-log(1-x))^2 (for fractions A002547(n)/A002548(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
A002547(n)/A002548(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)! - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Numerator of u(n) = Sum_{k=1..n-1} 1/(k*(n-k)) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012
a(n) = numerator of 2*Integral_{0..1} x^(n+1)*log(x/(1-x)) dx. - Groux Roland, May 18 2011
a(n) = numerator of A001008(n)/(n+1), since A001008(n)/A002805(n) are already in lowest terms. - M. F. Hasler, Jul 03 2019
EXAMPLE
H(n) = Sum_{k=1..n} 1/k, begins 1, 3/2, 11/6, 25/12, ... so H(n)/(n+1) begins 1/2, 1/2, 11/24, 5/12, ....
a(4) = numerator(H(4)/(4+1)) = 5.
MAPLE
H := proc(a, b) option remember; local m, p, q, r, s;
if b - a <= 1 then return 1, a fi; m := iquo(a + b, 2);
p, q := H(a, m); r, s := H(m, b); p*s + q*r, q*s; end:
A002547 := proc(n) H(1, n+1); numer(%[1]/(%[2]*(n+1))) end:
seq(A002547(n), n=1..30); # Peter Luschny, Jul 11 2019
MATHEMATICA
a[n_]:= Numerator[HarmonicNumber[n]/(n+1)])]; Table[a[n], {n, 35}] (* modified by G. C. Greubel, Jul 03 2019 *)
PROG
(PARI) h(n) = sum(k=1, n, 1/k);
vector(35, n, numerator(h(n)/(n+1))) \\ G. C. Greubel, Jul 03 2019
(PARI) A002547(n)=numerator(A001008(n)/(n+1)) \\ M. F. Hasler, Jul 03 2019
(Magma) [Numerator(HarmonicNumber(n)/(n+1)): n in [1..35]]; // G. C. Greubel, Jul 03 2019
(Sage) [numerator(harmonic_number(n)/(n+1)) for n in (1..35)] # G. C. Greubel, Jul 03 2019
(GAP) List([1..35], n-> NumeratorRat(Sum([1..n], k-> 1/k)/(n+1))) # G. C. Greubel, Jul 03 2019
CROSSREFS
KEYWORD
nonn,frac
EXTENSIONS
More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Simpler definition from Alexander Adamchuk, Oct 31 2004
Offset corrected by Gary Detlefs, Sep 08 2011
Definition corrected by M. F. Hasler, Jul 03 2019
STATUS
approved