Abstract
Polstar is a proposed NASA MIDEX space telescope that will provide high-resolution, simultaneous full-Stokes spectropolarimetry in the far ultraviolet, together with low-resolution linear polarimetry in the near ultraviolet. This observatory offers unprecedented capabilities to obtain unique information on the magnetic and plasma properties of the magnetospheres of hot stars. We describe an observing program making use of the known population of magnetic hot stars to test the fundamental hypothesis that magnetospheres should act to rapidly drain angular momentum, thereby spinning the star down, whilst simultaneously reducing the net mass-loss rate. Both effects are expected to lead to dramatic differences in the evolution of magnetic vs. non-magnetic stars.










Similar content being viewed by others
Data Availability
The IUE data used to evaluate ultraviolet fluxes are available at the Mikulski Archive for Space Telescopes. The TLUSTY BSTAR2006 and OSTAR2002 libraries of synthetic spectra used to evaluate ultraviolet fluxes for stars without available IUE data are available online.
Notes
It is important to note that stars with centrifugal magnetospheres still possess dynamical magnetospheres below the Kepler radius, and therefore still experience mass-loss quenching, except in the extreme case of critical rotation in which the Kepler radius is the same as the equatorial stellar radius.
References
Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102. 1602.03837 [gr-qc]
Andersson, B.-G., Clayton, G.C., Doney, K.D., Panopoulou, G.V., Hoang, T., Magalhaes, A.M., Yan, H., Ignace, R., Scowen, P.A.: Ultraviolet spectropolarimetry with Polstar: interstellar medium science (2021). 2111.08079 [astro-ph.GA]
Bouret, J.C., Neiner, C., Gómez de Castro, A.I., et al.: The science case for POLLUX: a high-resolution UV spectropolarimeter onboard LUVOIR. In: den Herder, J.W.A., Nikzad, S., Nakazawa, K. (eds.) Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, p. 106993B (2018). https://doi.org/10.1117/12.2312621. 1805.10021
Capitanio, L., Lallement, R., Vergely, J.L., et al.: Three-dimensional mapping of the local interstellar medium with composite data. Astron. Astrophys. 606, A65 (2017). https://doi.org/10.1051/0004-6361/201730831. 1706.07711 [astro-ph.GA]
Carciofi, A.C., Faes, D.M., Townsend, R.H.D., et al.: Polarimetric observations of \(\sigma\) Orionis E. Astrophys. J. Lett. 766(1), L9 (2013). https://doi.org/10.1088/2041-8205/766/1/L9. 1302.4684 [astro-ph.SR]
Deal, M., Cunha, M.S., Keszthelyi, Z., et al.: Fundamental properties of a selected sample of Ap stars: inferences from interferometric and asteroseismic constraints. Astron. Astrophys. 650, A125 (2021). https://doi.org/10.1051/0004-6361/202040234. 2104.08097 [astro-ph.SR]
Donati, J.F., Semel, M., Carter, B.D., et al.: Spectropolarimetric observations of active stars. Mon. Not. R. Astron. Soc. 291(4), 658–682 (1997). https://doi.org/10.1093/mnras/291.4.658
Donati, J.F., Babel, J., Harries, T.J., et al.: The magnetic field and wind confinement of \(\theta^{1}\) Orionis C. Mon. Not. R. Astron. Soc. 333(1), 55–70 (2002). https://doi.org/10.1046/j.1365-8711.2002.05379.x
Donati, J.F., Howarth, I.D., Jardine, M.M., et al.: The surprising magnetic topology of \(\tau\) Sco: fossil remnant or dynamo output? Mon. Not. R. Astron. Soc. 370(2), 629–644 (2006). https://doi.org/10.1111/j.1365-2966.2006.10558.x. astro-ph/0606156 [astro-ph]
Erba, C., David-Uraz, A., Petit, V., et al.: Ultraviolet line profiles of slowly rotating massive star winds using the ‘analytic dynamical magnetosphere’ formalism. Mon. Not. R. Astron. Soc. 506(4), 5373–5388 (2021). https://doi.org/10.1093/mnras/stab1853. 2106.13676 [astro-ph.SR]
Folsom, C.P., Ignace, R., Erba, C., Casini, R., del Pino Alemán, T., Gayley, K.G., Hobbs, K., Manso Sainz, R., Neiner, C., Petit, V., Shultz, M.E., Wade, G.A.: Ultraviolet spectropolarimetry: investigating stellar magnetic field diagnostics (2022). 2207.01865 [astro-ph.SR]
Gayley, K., Vink, J.S., ud-Doula, A., et al.: Ultraviolet spectropolarimetry with Polstar: clumping and mass-loss rate corrections (2021). 2111.11633 [astro-ph.SR]
Grunhut, J.H., Wade, G.A., Leutenegger, M., et al.: Discovery of a magnetic field in the rapidly rotating O-type secondary of the colliding-wind binary HD 47129 (Plaskett’s star). Mon. Not. R. Astron. Soc. 428, 1686–1695 (2013). https://doi.org/10.1093/mnras/sts153. 1209.6326 [astro-ph.SR]
Grunhut, J.H., Wade, G.A., Neiner, C., et al.: The MiMeS survey of magnetism in massive stars: magnetic analysis of the O-type stars. Mon. Not. R. Astron. Soc. 465, 2432–2470 (2017). https://doi.org/10.1093/mnras/stw2743. 1610.07895 [astro-ph.SR]
Grunhut, J.H., Wade, G.A., Folsom, C.P., Neiner, C., Kochukhov, O., Alecian, E., Shultz, M., Petit, V. (MiMeS Collaboration and BinaMIcS Collaboration): The magnetic field and magnetosphere of Plaskett’s star: a fundamental shift in our understanding of the system. Mon. Not. R. Astron. Soc. 512(2), 1944–1966 (2022). https://doi.org/10.1093/mnras/stab3320. 2111.06251
Henrichs, H.F., de Jong, J.A., Verdugo, E., et al.: Discovery of the magnetic field in the pulsating B star \(\beta\) Cephei. Astron. Astrophys. 555, A46 (2013). https://doi.org/10.1051/0004-6361/201321584. 1305.2601 [astro-ph.SR]
Jones, C.E., Labadie-Bartz, J., Cotton, D.V., Nazé, Y., Peters, G.J., Hillier, D.J., Neiner, C., Richardson, N.D., Hoffman, J.L., Carciofi, A.C., Wisniewski, J.P., Gayley, K.G., Suffak, M.W., Ignace, R., Scowen, P.A.: Ultraviolet spectropolarimetry: on the origin of rapidly rotating B stars. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04127-5
Keszthelyi, Z., Meynet, G., Georgy, C., et al.: The effects of surface fossil magnetic fields on massive star evolution: I. Magnetic field evolution, mass-loss quenching, and magnetic braking. Mon. Not. R. Astron. Soc. 485(4), 5843–5860 (2019). https://doi.org/10.1093/mnras/stz772. 1902.09333 [astro-ph.SR]
Keszthelyi, Z., Meynet, G., Shultz, M.E., et al.: The effects of surface fossil magnetic fields on massive star evolution - II. Implementation of magnetic braking in MESA and implications for the evolution of surface rotation in OB stars. Mon. Not. R. Astron. Soc. 493(1), 518–535 (2020). https://doi.org/10.1093/mnras/staa237. 2001.06239 [astro-ph.SR]
Keszthelyi, Z., Meynet, G., Martins, F., et al.: The effects of surface fossil magnetic fields on massive star evolution - III. The case of \(\tau\) Sco. Mon. Not. R. Astron. Soc. 504(2), 2474–2492 (2021). https://doi.org/10.1093/mnras/stab893. 2103.13465 [astro-ph.SR]
Kochukhov, O., Wade, G.A.: Magnetic field topology of \(\tau\) Scorpii. The uniqueness problem of Stokes V ZDI inversions. Astron. Astrophys. 586, A30 (2016). https://doi.org/10.1051/0004-6361/201527454. 1511.07881 [astro-ph.SR]
Kochukhov, O., Shultz, M., Neiner, C.: Magnetic field topologies of the bright, weak-field Ap stars \(\theta\) Aurigae and \(\epsilon\) Ursae Majoris. Astron. Astrophys. 621, A47 (2019). https://doi.org/10.1051/0004-6361/201834279. 1811.04928 [astro-ph.SR]
Lallement, R., Vergely, J.L., Valette, B., et al.: 3D maps of the local ISM from inversion of individual color excess measurements. Astron. Astrophys. 561, A91 (2014). https://doi.org/10.1051/0004-6361/201322032. 1309.6100 [astro-ph.GA]
Landstreet, J.D., Borra, E.F.: The magnetic field of Sigma Orionis E. Astrophys. J. Lett. 224, L5–L8 (1978). https://doi.org/10.1086/182746
Lanz, T., Hubeny, I.: A grid of non-LTE line-blanketed model atmospheres of O-type stars. Astrophys. J. Suppl. Ser. 146(2), 417–441 (2003). https://doi.org/10.1086/374373. astro-ph/0210157 [astro-ph]
Lanz, T., Hubeny, I.: A grid of NLTE line-blanketed model atmospheres of early B-type stars. Astrophys. J. Suppl. Ser. 169(1), 83–104 (2007). https://doi.org/10.1086/511270. astro-ph/0611891 [astro-ph]
Leto, P., Trigilio, C., Buemi, C.S., et al.: Searching for a CU Virginis-type cyclotron maser from \(\sigma\) Orionis E: the role of the magnetic quadrupole component. Mon. Not. R. Astron. Soc. 423, 1766–1774 (2012). https://doi.org/10.1111/j.1365-2966.2012.20997.x. 1203.6475 [astro-ph.SR]
Leto, P., Trigilio, C., Krtička, J., et al.: A scaling relationship for non-thermal radio emission from ordered magnetospheres: from the top of the main sequence to planets. Mon. Not. R. Astron. Soc. 507(2), 1979–1998 (2021). https://doi.org/10.1093/mnras/stab2168. 2107.11995 [astro-ph.SR]
Morin, J., Bouret, J.C., Neiner, C., et al.: Stellar physics with high-resolution UV spectropolarimetry (2019). 1908.01545 [astro-ph.SR]
Neiner, C., Geers, V.C., Henrichs, H.F., et al.: Discovery of a magnetic field in the Slowly Pulsating B star <ASTROBJ>zeta Cassiopeiae</ASTROBJ>. Astron. Astrophys. 406, 1019–1031 (2003a). https://doi.org/10.1051/0004-6361:20030742
Neiner, C., Henrichs, H.F., Floquet, M., et al.: Rotation, pulsations and magnetic field in <ASTROBJ>V 2052 Ophiuchi</ASTROBJ>: a new He-strong star. Astron. Astrophys. 411, 565–579 (2003b). https://doi.org/10.1051/0004-6361:20031342
Oksala, M.E., Kochukhov, O., Krtička, J., et al.: Revisiting the rigidly rotating magnetosphere model for \(\sigma\) Ori E - II. Magnetic Doppler imaging, arbitrary field RRM, and light variability. Mon. Not. R. Astron. Soc. 451(2), 2015–2029 (2015). https://doi.org/10.1093/mnras/stv1086. 1505.04839 [astro-ph.SR]
Owocki, S.P., ud-Doula, A., Sundqvist, J.O., et al.: An ‘analytic dynamical magnetosphere’ formalism for X-ray and optical emission from slowly rotating magnetic massive stars. Mon. Not. R. Astron. Soc. 462(4), 3830–3844 (2016). https://doi.org/10.1093/mnras/stw1894. 1607.08568 [astro-ph.SR]
Owocki, S.P., Shultz, M.E., ud-Doula, A., et al.: How the breakout-limited mass in B-star centrifugal magnetospheres controls their circumstellar H \(\alpha\) emission. Mon. Not. R. Astron. Soc. 499(4), 5366–5378 (2020). https://doi.org/10.1093/mnras/staa2325. 2009.12359 [astro-ph.SR]
Owocki, S.P., Shultz, M.E., ud-Doula, A., Chandra, P., Das, B., Leto, P.: Centrifugal breakout reconnection as the electron acceleration mechanism powering the radio magnetospheres of early-type stars. Mon. Not. R. Astron. Soc. 513(1), 1449–1458 (2022). https://doi.org/10.1093/mnras/stac341. 2202.05449
Peters, G.J., Gayley, K.G., Ignace, R., Jones, C.E., Nazé, Y., St-Louis, N., Stevance, H., Vink, J.S., Richardson, N.D., Hoffman, J.L., Lomax, J.R., Shenar, T., Fullard, A.G., Scowen, P.A.: Ultraviolet spectropolarimetry: conservative and nonconservative mass transfer in OB interacting binaries. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04106-w
Petit, V., Massa, D.L., Marcolino, W.L.F., et al.: Discovery of the first \(\tau\) Sco analogues. Mon. Not. R. Astron. Soc. 412, L45–L49 (2011). https://doi.org/10.1111/j.1745-3933.2010.01002.x. HD 66665 and HD 63425. 1012.4445 [astro-ph.SR]
Petit, V., Owocki, S.P., Wade, G.A., et al.: P13: a magnetic confinement versus rotation classification of massive-star magnetospheres. Mon. Not. R. Astron. Soc. 429, 398–422 (2013). https://doi.org/10.1093/mnras/sts344. 1211.0282 [astro-ph.SR]
Petit, V., Keszthelyi, Z., MacInnis, R., et al.: Magnetic massive stars as progenitors of ‘heavy’ stellar-mass black holes. Mon. Not. R. Astron. Soc. 466(1), 1052–1060 (2017). https://doi.org/10.1093/mnras/stw3126. 1611.08964 [astro-ph.SR]
Piskunov, N., Kochukhov, O.: Doppler Imaging of stellar magnetic fields. I. Techniques. Astron. Astrophys. 381, 736–756 (2002). https://doi.org/10.1051/0004-6361:20011517
Reiners, A., Stahl, O., Wolf, B., et al.: Modeling line profile variations of sigma Ori E and theta 1 Ori C. Astron. Astrophys. 363, 585–592 (2000)
Schneider, F.R.N., Ohlmann, S.T., Podsiadlowski, P., et al.: Stellar mergers as the origin of magnetic massive stars. Nature 574(7777), 211–214 (2019). https://doi.org/10.1038/s41586-019-1621-5. 1910.14058 [astro-ph.SR]
Schnerr, R.S., Henrichs, H.F., Neiner, C., et al.: Magnetic field measurements and wind-line variability of OB-type stars. Astron. Astrophys. 483(3), 857–867 (2008). https://doi.org/10.1051/0004-6361:20077740. 1008.4260 [astro-ph.SR]
Schöller, M., Hubrig, S., Fossati, L., et al.: B fields in OB stars (BOB): concluding the FORS 2 observing campaign. Astron. Astrophys. 599, A66 (2017). https://doi.org/10.1051/0004-6361/201628905. 1611.04502 [astro-ph.SR]
Scowen, P.A., Gayley, K., Neiner, C., et al.: The Polstar high resolution spectropolarimetry MIDEX mission. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04107-9
Shultz, M., Wade, G.A.: Confirming the oblique rotator model for the extremely slowly rotating O8f?p star HD 108. Mon. Not. R. Astron. Soc. 468(4), 3985–3992 (2017). https://doi.org/10.1093/mnras/stx759. 1703.08996 [astro-ph.SR]
Shultz, M., Wade, G.A., Rivinius, T., et al.: The pulsating magnetosphere of the extremely slowly rotating magnetic \(\beta\) Cep star \(\xi ^{1}\) CMa. Mon. Not. R. Astron. Soc. 471, 2286–2310 (2017). https://doi.org/10.1093/mnras/stx1632. 1706.08820 [astro-ph.SR]
Shultz, M.E., Wade, G.A., Rivinius, T., et al.: The magnetic early B-type stars I: magnetometry and rotation. Mon. Not. R. Astron. Soc. 475, 5144–5178 (2018). https://doi.org/10.1093/mnras/sty103. 1801.02924 [astro-ph.SR]
Shultz, M.E., Wade, G.A., Rivinius, T., et al.: The magnetic early B-type stars - III. A main-sequence magnetic, rotational, and magnetospheric biography. Mon. Not. R. Astron. Soc. 490(1), 274–295 (2019). https://doi.org/10.1093/mnras/stz2551. 1909.02530 [astro-ph.SR]
Shultz, M.E., Owocki, S., Rivinius, T., et al.: The magnetic early B-type stars - IV. Breakout or leakage? H \(\alpha\) emission as a diagnostic of plasma transport in centrifugal magnetospheres. Mon. Not. R. Astron. Soc. 499(4), 5379–5395 (2020). https://doi.org/10.1093/mnras/staa3102. 2009.12336 [astro-ph.SR]
Shultz, M.E., Owocki, S.P., ud-Doula, A., Biswas, A., Bohlender, D., Chandra, P., Das, B., David-Uraz, A., Khalack, V., Kochukhov, O., Landstreet, J.D., Leto, P., Monin, D., Neiner, C., Rivinius, T., Wade, G.A.: MOBSTER – VI. The crucial influence of rotation on the radio magnetospheres of hot stars. Mon. Not. R. Astron. Soc. 513(1), 1429–1448 (2022). https://doi.org/10.1093/mnras/stac136. 2201.05512
Sikora, J., Wade, G.A., Power, J., et al.: A volume-limited survey of mCP stars within 100 pc II: rotational and magnetic properties. Mon. Not. R. Astron. Soc. 483(3), 3127–3145 (2019). https://doi.org/10.1093/mnras/sty2895. 1811.05635 [astro-ph.SR]
Smith, M.A., Groote, D.: Wind circulation in selected rotating magnetic early-B stars. Astron. Astrophys. 372, 208–226 (2001). https://doi.org/10.1051/0004-6361:20010472. astro-ph/0104059 [astro-ph]
Song, H.F., Meynet, G., Maeder, A., et al.: News from Gaia on \(\sigma\) Ori E: a case study for the wind magnetic braking process. Astron. Astrophys. 657, A60 (2022). https://doi.org/10.1051/0004-6361/202141512. 2108.13734 [astro-ph.SR]
St-Louis, N., Gayley, K.G., Hillier, D.J., Ignace, R., Jones, C.E., David-Uraz, A., Richardson, N.D., Vink, J.S., Peters, J., Hoffman, J.L., Nazé, Y., Stevance, H., Shenar, T., Fullard, A.G., Lomax, J.R., Scowen, P.A.: UV spectropolarimetry with Polstar: massive star binary colliding winds. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04102-0
Stahl, O., Kaufer, A., Rivinius, T., et al.: Phase-locked photospheric and stellar-wind variations of \(\theta^{1}\) Orionis C. Astron. Astrophys. 312, 539–548 (1996)
Takahashi, K., Langer, N.: Modeling of magneto-rotational stellar evolution. I. Method and first applications. Astron. Astrophys. 646, A19 (2021). https://doi.org/10.1051/0004-6361/202039253. 2010.13909 [astro-ph.SR]
Townsend, R.H.D., Owocki, S.P.: A rigidly rotating magnetosphere model for circumstellar emission from magnetic OB stars. Mon. Not. R. Astron. Soc. 357, 251–264 (2005). https://doi.org/10.1111/j.1365-2966.2005.08642.x. astro-ph/0408565
ud-Doula, A.: Large-scale wind structure due to magnetic fields. In: Hamann, W.R., Feldmeier, A., Oskinova, L.M. (eds.) Clumping in Hot-Star Winds, p. 125 (2008)
ud-Doula, A., Owocki, S.P.: Dynamical simulations of magnetically channeled line-driven stellar winds. I. Isothermal, nonrotating, radially driven flow. Astrophys. J. 576(1), 413–428 (2002). https://doi.org/10.1086/341543. astro-ph/0201195 [astro-ph]
ud-Doula, A., Owocki, S.P., Townsend, R.H.D.: Dynamical simulations of magnetically channelled line-driven stellar winds - II. The effects of field-aligned rotation. Mon. Not. R. Astron. Soc. 385(1), 97–108 (2008). https://doi.org/10.1111/j.1365-2966.2008.12840.x. 0712.2780 [astro-ph]
ud-Doula, A., Owocki, S.P., Townsend, R.H.D.: Dynamical simulations of magnetically channelled line-driven stellar winds - III. Angular momentum loss and rotational spin-down. Mon. Not. R. Astron. Soc. 392(3), 1022–1033 (2009). https://doi.org/10.1111/j.1365-2966.2008.14134.x. 0810.4247 [astro-ph]
ud-Doula, A., Cheung, M.C.M., David-Uraz, A., Erba, C., Folsom, C.P., Gayley, K.G., Nazé, Y., Neiner, C., Petit, V., Prinja, R., Shultz, M.E., Sudnik, N., Vink, J.S., Wade, G.A.: Ultraviolet spectropolarimetric diagnostics of hot star magnetospheres. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04097-8
Vink, J.S., de Koter, A., Lamers, H.J.G.L.M.: Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001). https://doi.org/10.1051/0004-6361:20010127. astro-ph/0101509
Wade, G.A., Neiner, C., Alecian, E., et al.: The MiMeS survey of magnetism in massive stars: introduction and overview. Mon. Not. R. Astron. Soc. 456(1), 2–22 (2016). https://doi.org/10.1093/mnras/stv2568. 1511.08425 [astro-ph.SR]
Wisniewski, J.P., Berdyugin, A., Berdyugina, S., Danchi, W., Dong, R., Oudmaijer, R.D., Airapetian, V., Brittain, S., Gayley, K.G., Ignace, R., Langlois, M., Lawson, K., Lomax, J.R., Rich, E., Tamura, M., Vink, J.S., Scowen, P.A.: UV spectropolarimetry with Polstar: protoplanetary disks. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04125-7
Funding
AuD acknowledges support by NASA through Chandra Award number TM1-22001B and GO2-23003X issued by the Chandra X-ray Observatory 27 Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060.
M.E.S. acknowledges financial support from the Annie Jump Cannon Fellowship, supported by the University of Delaware and endowed by the Mount Cuba Astronomical Observatory.
A.D.-U. is supported by NASA under award number 80GSFC21M0002.
C.E. gratefully acknowledges support for this work provided by NASA through grant number HST-AR-15794.001-A from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. C.E. also gratefully acknowledges support from the National Science Foundation under Grant No. AST-2009412.
M.C.M.C. acknowledges internal research support from Lockheed Martin Advanced Technology Center.
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.
Y.N. acknowledges support from the Fonds National de la Recherche Scientifique (Belgium), the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme (contracts linked to XMM-Newton and Gaia).
N.S. acknowledges support provided by NAWA through grant number PPN/SZN/2020/1/00016/U/DRAFT/00001/U/00001.
G.A.W. acknowledges Discovery Grant support from the Natural Sciences and Engineering Research Council of Canada (NSERC).
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. The first draft of the manuscript was written by M. E. Shultz and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: UV Spectropolarimetry for Stellar, Interstellar, and Exoplanetary Astrophysics with Polstar. Guest Editors: Paul A. Scowen, Carol E. Jones, René D. Oudmaijer.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shultz, M.E., Casini, R., Cheung, M.C.M. et al. Ultraviolet spectropolarimetry with Polstar: using Polstar to test magnetospheric mass-loss quenching. Astrophys Space Sci 367, 120 (2022). https://doi.org/10.1007/s10509-022-04113-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-022-04113-x