Abstract
The winds of massive stars are important for their direct impact on the interstellar medium, and for their influence on the final state of a star prior to it exploding as a supernova. However, the dynamics of these winds is understood primarily via their illumination from a single central source. The Doppler shift seen in resonance lines is a useful tool for inferring these dynamics, but the mapping from that Doppler shift to the radial distance from the source is ambiguous. Binary systems can reduce this ambiguity by providing a second light source at a known radius in the wind, seen from orbitally modulated directions. From the nature of the collision between the winds, a massive companion also provides unique additional information about wind momentum fluxes. Since massive stars are strong ultraviolet (UV) sources, and UV resonance line opacity in the wind is strong, UV instruments with a high resolution spectroscopic capability are essential for extracting this dynamical information. Polarimetric capability also helps to further resolve ambiguities in aspects of the wind geometry that are not axisymmetric about the line of sight, because of its unique access to scattering direction information. We review how the proposed MIDEX-scale mission Polstar can use UV spectropolarimetric observations to critically constrain the physics of colliding winds, and hence radiatively-driven winds in general. We propose a sample of 20 binary targets, capitalizing on this unique combination of illumination by companion starlight, and collision with a companion wind, to probe wind attributes over a range in wind strengths. Of particular interest is the hypothesis that the radial distribution of the wind acceleration is altered significantly, when the radiative transfer within the winds becomes optically thick to resonance scattering in multiple overlapping UV lines.












Similar content being viewed by others
Data Availability
The team will make the data obtained within the context of this mission available to the astronomical community.
Notes
See the Potsdam PoWR models at the following website: www.astro.physik.uni-potsdam.de/~wrh/PoWR/powrgrid1.php.
References
Andersson, B-G., Clayton, G.C., et al.: Ultraviolet spectropolarimetry with Polstar: interstellar medium science. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04153-3
Auer, L.H., Koenigsberger, G.: Line profile variations from atmospheric eclipses: constraints on the wind structure in Wolf-Rayet stars. Astrophys. J. 436, 859 (1994). https://doi.org/10.1086/174963
Auer, L.H., van Blerkom, D.: Electron scattering in spherically expanding envelopes. Astrophys. J. 178, 175–181 (1972). https://doi.org/10.1086/151777
Bernat, A.P., Lambert, D.L.: Electron scattering in the expanding atmosphere of P Cygni. Publ. Astron. Soc. Pac. 90, 520–525 (1978). https://doi.org/10.1086/130376
Björklund, R., Sundqvist, J.O., Puls, J., et al.: New predictions for radiation-driven, steady-state mass-loss and wind-momentum from hot, massive stars. II. A grid of O-type stars in the Galaxy and the Magellanic Clouds. Astron. Astrophys. 648, A36 (2021). https://doi.org/10.1051/0004-6361/202038384. arXiv:2008.06066 [astro-ph.SR]
Bouret, J.C., Hillier, D.J., Lanz, T., et al.: Properties of Galactic early-type O-supergiants. A combined FUV-UV and optical analysis. Astron. Astrophys. 544, A67 (2012). https://doi.org/10.1051/0004-6361/201118594. arXiv:1205.3075 [astro-ph.SR]
Brown, D.N., Shore, S.N.: Doppler tomography of the stellar wind of the Wolf-Rayet binary star V444-Cygni. In: Rolfe, E.J., Wilson, R. (eds.) New Insights in Astrophysics. Eight Years of UV Astronomy with IUE, p. 353 (1986)
Brown, J.C., McLean, I.S., Emslie, A.G.: Polarisation by Thomson scattering in optically thin stellar envelopes. II—Binary and multiple star envelopes and the determination of binary inclinations. Astron. Astrophys. 68, 415–427 (1978). http://adsabs.harvard.edu/abs/1978A%26A....68..415B
Brown, J.C., Aspin, C., Simmons, J.F.L., et al.: The effect of orbital eccentricity on polarimetric binary diagnostics. Mon. Not. R. Astron. Soc. 198, 787 (1982). https://doi.org/10.1093/mnras/198.3.787. https://ui.adsabs.harvard.edu/#abs/1982MNRAS.198..787B/abstract
Callingham, J.R., Crowther, P.A., Williams, P.M., et al.: Two Wolf-Rayet stars at the heart of colliding-wind binary Apep. Mon. Not. R. Astron. Soc. 495, 3323–3331 (2020). https://doi.org/10.1093/mnras/staa1244. http://adsabs.harvard.edu/abs/2020MNRAS.495.3323C
Cantiello, M., Langer, N., Brott, I., et al.: Sub-surface convection zones in hot massive stars and their observable consequences. Astron. Astrophys. 499, 279–290 (2009). https://doi.org/10.1051/0004-6361/200911643. arXiv:0903.2049 [astro-ph.SR]
Cantó, J., Raga, A.C., Wilkin, F.P.: Exact, algebraic solutions of the thin-shell two-wind interaction problem. Astrophys. J. 469, 729 (1996). https://doi.org/10.1086/177820. https://ui.adsabs.harvard.edu/abs/1996ApJ...469..729C
Cardelli, J.A., Clayton, G.C., Mathis, J.S.: The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989). https://doi.org/10.1086/167900
Cherepashchuk, A.M., Eaton, J.A., Khaliullin, K.F.: Ultraviolet photometry from the Orbiting Astronomical Observatory XXXIX. The structure of the eclipsing Wolf-Rayet binary V444 Cygni as derived from light curves between 2460 A and 3.5 microns. Astrophys. J. 281, 774–788 (1984). https://doi.org/10.1086/162156
Clayton, G.C., Mathis, J.S.: On the relationship between optical polarization and extinction. Astrophys. J. 327, 911 (1988). https://doi.org/10.1086/166249
Cranmer, S.R., Owocki, S.P.: Hydrodynamical simulations of corotating interaction regions and discrete absorption components in rotating O-star winds. Astrophys. J. 462, 469 (1996). https://doi.org/10.1086/177166. arXiv:astro-ph/9508004
Crowther, P.A., Dessart, L., Hillier, D.J., et al.: Stellar and wind properties of LMC WC4 stars. A metallicity dependence for Wolf-Rayet mass-loss rates. Astron. Astrophys. 392, 653–669 (2002). https://doi.org/10.1051/0004-6361:20020941. arXiv:astro-ph/0206233
Davies, B., Oudmaijer, R.D., Vink, J.S.: Asphericity and clumpiness in the winds of Luminous Blue Variables. Astron. Astrophys. 439, 1107–1125 (2005). https://doi.org/10.1051/0004-6361:20052781. arXiv:astro-ph/0505344
Dessart, L., Hillier, D.J., Leonard, D.C.: Polarization signatures of a high-velocity scatterer in nebular-phase spectra of Type II supernovae. Astron. Astrophys. 651, A10 (2021). https://doi.org/10.1051/0004-6361/202140409. arXiv:2105.01162 [astro-ph.HE]
Eaton, J.A., Cherepashchuk, A.M., Khaliullin, K.F.: Stratification of the extended atmosphere of the Wolf-Rayet component of V444 Cygni. Astrophys. J. 297, 266 (1985). https://doi.org/10.1086/163524
Eversberg, T., Lepine, S., Moffat, A.F.J.: Outmoving clumps in the wind of the hot O supergiant zeta Puppis. Astrophys. J. 494, 799–805 (1998). https://doi.org/10.1086/305218
Fox, G.K.: Stellar occultation of polarized light from circumstellar electrons. 4: detached binary systems. Astrophys. J. 432, 262–273 (1994). https://doi.org/10.1086/174567. http://adsabs.harvard.edu/abs/1994ApJ...432..262F
Fox, G.K., Hines, D.C.: The polarimetric nature of HD 108. Mon. Not. R. Astron. Soc. 295, 423–427 (1998). https://doi.org/10.1046/j.1365-8711.1998.01296.x
Fullard, A.G.: A spectropolarimetric study of Wolf-Rayet binary stars. PhD thesis, University of Denver, United States (2020)
Fullard, A.G., St-Louis, N., Moffat, A.F.J., et al.: A multiwavelength search for intrinsic linear polarization in Wolf-Rayet winds. Astron. J. 159(5), 214 (2020). https://doi.org/10.3847/1538-3881/ab8293. arXiv:1912.12249 [astro-ph.SR]
Fullerton, A.W., Massa, D.L., Prinja, R.K.: The discordance of mass-loss estimates for Galactic O-type stars. Astrophys. J. 637, 1025–1039 (2006). https://doi.org/10.1086/498560. arXiv:astro-ph/0510252
Gayley, K.G.: Asymptotic opening angles for colliding-wind bow shocks: the characteristic-angle approximation. Astrophys. J. 703(1), 89–95 (2009). https://doi.org/10.1088/0004-637X/703/1/89. arXiv:0905.1395 [astro-ph.SR]
Gayley, K.G., Vink, J.S., ud Doula, A., et al.: Understanding structure in line-driven stellar winds using ultraviolet spectropolarimetry in the time domain. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04142-6
Georgiev, L.N., Koenigsberger, G.: Line profile variations in WR+O binary systems. I. The code and basic predictions. Astron. Astrophys. 423, 267–279 (2004). https://doi.org/10.1051/0004-6361:200400030. https://ui.adsabs.harvard.edu/abs/2004A%26A...423..267G/abstract
Girard, T., Willson, L.A.: Winds in collision. III. Modeling the interaction nebulae of eruptivesymbiotics. Astron. Astrophys. 183 247–256 (1987). https://ui.adsabs.harvard.edu/abs/1987A%26A...183..247G/abstract
Gosset, E., Nazé, Y., Sana, H., et al.: Phase-resolved XMM-Newton observations of the massive WR+O binary WR 22. Astron. Astrophys. 508(2), 805–821 (2009). https://doi.org/10.1051/0004-6361/20077981
Gräfener, G., Hamann, W.R.: Hydrodynamic model atmospheres for WR stars. Self-consistent modeling of a WC star wind. Astron. Astrophys. 432, 633–645 (2005). https://doi.org/10.1051/0004-6361:20041732. arXiv:astro-ph/0410697
Gräfener, G., Koesterke, L., Hamann, W.R.: Line-blanketed model atmospheres for WR stars. Astron. Astrophys. 387, 244–257 (2002). https://doi.org/10.1051/0004-6361:20020269
Gräfener, G., Owocki, S.P., Vink, J.S.: Stellar envelope inflation near the Eddington limit. Implications for the radii of Wolf-Rayet stars and luminous blue variables. Astron. Astrophys. 538, A40 (2012). https://doi.org/10.1051/0004-6361/201117497. arXiv:1112.1910 [astro-ph.SR]
Grassitelli, L., Nachr, C.A., Sanyal, D., et al.: Diagnostics of the unstable envelopes of Wolf-Rayet stars. Astron. Astrophys. 590, A12 (2016). https://doi.org/10.1051/0004-6361/201527873. arXiv:1603.08931 [astro-ph.SR]
Hainich, R., Ramachandran, V., Shenar, T., et al.: PoWR grids of non-LTE model atmospheres for OB-type stars of various metallicities. Astron. Astrophys. 621, A85 (2019). https://doi.org/10.1051/0004-6361/201833787. arXiv:1811.06307 [astro-ph.SR]
Hamann, W.R., Koesterke, L.: Spectrum formation in clumped stellar winds: consequences for the analyses of Wolf-Rayet spectra. Astron. Astrophys. 335, 1003–1008 (1998)
Harries, T.J., Hillier, D.J., Howarth, I.D.: A spectropolarimetric survey of northern hemisphere Wolf-Rayet stars. Mon. Not. R. Astron. Soc. 296(4), 1072–1088 (1998). https://doi.org/10.1046/j.1365-8711.1998.01508.x
Harries, T.J., Babler, B.L., Fox, G.K.: The polarized spectrum of the dust producing Wolf-Rayet+O-star binary WR137. Astron. Astrophys. 361, 273–282 (2000)
Hillier, D.J.: The influence of electron scattering on the He II line profiles in HD50896. Astrophys. J. 280, 744–748 (1984). https://doi.org/10.1086/162047
Hillier, D.J.: The effects of electron scattering and wind clumping for early emission line stars. Astron. Astrophys. 247, 455–468 (1991)
Hillier, D.J., Miller, D.L.: Constraints on the evolution of massive stars through spectral analysis. I. The WC5 star HD 165763. Astrophys. J. 519, 354–371 (1999). https://doi.org/10.1086/307339
Hillier, D.J., Lanz, T., Heap, S.R., et al.: A tale of two stars: the extreme O7 Iaf+ supergiant AV 83 and the OC7.5 III((f)) star AV 69. Astrophys. J. 588, 1039–1063 (2003). https://doi.org/10.1086/374329
Hoffman, J.L.: Polarized line profiles as diagnostics of circumstellar geometry in Type IIn supernovae. In: Rev. Mex. Astron. Astrofis. Conference Series, pp. 57–63 (2007). astro-ph/0612244
Hoffman, J.L., Nordsieck, K.H., Fox, G.K.: Spectropolarimetric evidence for a bipolar flow in beta Lyrae. Astron. J. 115(4), 1576–1591 (1998). https://doi.org/10.1086/300274
Hoffman, J.L., Whitney, B.A., Nordsieck, K.H.: The effect of multiple scattering on the polarization from binary star envelopes. I. Self- and externally illuminated disks. Astrophys. J. 598(1), 572–587 (2003). https://doi.org/10.1086/378770. arXiv:astro-ph/0307261
Howarth, I.D., Prinja, R.K.: The stellar winds of 203 Galactic O stars—a quantitative ultraviolet survey. Astrophys. J. Suppl. Ser. 69, 527–592 (1989). https://doi.org/10.1086/191321
Huk, L.N.: Time-dependent spectropolarimetric modeling of interacting core collapse supernovae. PhD thesis, University of Denver, United States (2017)
Ignace, R.: Polarization from Be disks with 1-armed density waves. In: Smith, M.A., Henrichs, H.F., Fabregat, J. (eds.) IAU Colloq. 175: The Be Phenomenon in Early-Type Stars, p. 452 (2000a)
Ignace, R.: Resonance line scattering polarization in optically thin planar equatorial disks. Astron. Astrophys. 363, 1106–1114 (2000b)
Ignace, R., Al-Malki, M.B., Simmons, J.F.L., et al.: Scattering polarization due to light source anisotropy. II. Envelope of arbitrary shape. Astron. Astrophys. 496(2), 503–511 (2009). https://doi.org/10.1051/0004-6361:200811214
Ignace, R., Fullard, A., Shrestha, M., et al.: Modeling the optical to ultraviolet polarimetric variability from Thomson Scattering in colliding wind binaries (2022). arXiv e-prints, arXiv:2205.07612 [astro-ph.SR]
Ishii, M., Ueno, M., Kato, M.: Core-halo structure of a chemically homogeneous massive star and bending of the zero-age main sequence. Publ. Astron. Soc. Jpn. 51, 417–424 (1999). https://doi.org/10.1093/pasj/51.4.417. astro-ph/9907154
Jeffery, D.J.: The Soboloev-P method: a generalization of the Sobolev method for the treatment of the polarization state of radiation and the polarizing effect of resonance line scattering. Astrophys. J. Suppl. Ser. 71, 951 (1989). https://doi.org/10.1086/191404
Jones, C.E., Labadie-Bartz, J., Cotton, D.V., et al.: Ultraviolet spectropolarimetry: on the origin of rapidly rotating B stars. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04127-5
Kallrath, J.: Dynamics of colliding binary stellar winds—pressure equilibrium models. Mon. Not. R. Astron. Soc. 248, 653 (1991). https://doi.org/10.1093/mnras/248.4.653. https://ui.adsabs.harvard.edu/abs/1991MNRAS.248..653K
Kaper, L., Henrichs, H.F., Nichols, J.S., et al.: Long- and short-term variability in O-star winds. I. Time series of UV spectra for 10 bright O stars. Astron. Astrophys. Suppl. Ser. 116, 257–287 (1996)
Kennedy, M., Dougherty, S.M., Fink, A., et al.: Modeling the radio emission from Cyg OB2 No. 5: a quadruple system? Astrophys. J. 709(2), 632–643 (2010). https://doi.org/10.1088/0004-637X/709/2/632. arXiv:0911.5674 [astro-ph.SR]
Koenigsberger, G.: The Fe V/Fe VI ionization structure in WNE Wolf-Rayet winds. Astron. Astrophys. 235, 282 (1990)
Koenigsberger, G., Auer, L.H.: IUE observations of phase-dependent variations in WN+O systems. Astrophys. J. 297, 255–265 (1985). https://doi.org/10.1086/163523
Kurosawa, R., Hillier, D.J., Pittard, J.M.: Mass-loss rate determination for the massive binary V444 Cygni using 3-D Monte-Carlo simulations of line and polarization variability. Astron. Astrophys. 388, 957–977 (2002). https://doi.org/10.1051/0004-6361:20020443. http://adsabs.harvard.edu/abs/2002A%26A...388..957K
Lamberts, A., Fromang, S., Dubus, G.: High-resolution numerical simulations of unstable colliding stellar winds. Mon. Not. R. Astron. Soc. 418, 2618–2629 (2011). https://doi.org/10.1111/j.1365-2966.2011.19653.x. https://ui.adsabs.harvard.edu/abs/2011MNRAS.418.2618L
Leonard, D.C., Dessart, L., Hillier, D.J., et al.: A high-velocity scatterer revealed in the thinning ejecta of a type II supernova (2021). arXiv e-prints, arXiv:2110.10875
Lépine, S., Moffat, A.F.J.: Wind inhomogeneities in Wolf-Rayet stars. II. Investigation of emission-line profile variations. Astrophys. J. 514, 909–931 (1999). https://doi.org/10.1086/306958
Lomax, J.R., Nazé, Y., Hoffman, J.L., et al.: V444 Cygni X-ray and polarimetric variability: radiative and Coriolis forces shape the wind collision region. Astron. Astrophys. 573, A43 (2015). https://doi.org/10.1051/0004-6361/201424468. arXiv:1410.6117 [astro-ph.SR]
Lucy, L.B.: Mass fluxes for O stars. Astron. Astrophys. 468, 649–655 (2007). https://doi.org/10.1051/0004-6361:20077298. arXiv:astro-ph/0703650
Luehrs, S.: A colliding-wind model for the Wolf-Rayet system HD 152270. Publ. Astron. Soc. Pac. 109, 504–513 (1997). https://doi.org/10.1086/133907
MacLeod, M., Loeb, A.: Hydrodynamic winds from twin-star binaries. Astrophys. J. 902, 85 (2020). https://doi.org/10.3847/1538-4357/abb313. https://ui.adsabs.harvard.edu/abs/2020ApJ...902...85M
Maeder, A.: Evolution and nucleosynthesis in massive stars with mass loss—the yields in helium and heavy elements and constraints on the past star formation rate. Astron. Astrophys. 101, 385–396 (1981)
Martin, P.G., Clayton, G.C., Wolff, M.J.: Ultraviolet interstellar linear polarization. V. Analysis of the final data set. Astrophys. J. 510(2), 905–914 (1999). https://doi.org/10.1086/306613
Massa, D., Fullerton, A.W., Sonneborn, G., et al.: Constraints on the ionization balance of hot-star winds from FUSE observations of O stars in the Large Magellanic Cloud. Astrophys. J. 586, 996–1018 (2003). https://doi.org/10.1086/367786. arXiv:astro-ph/0211518
Meynet, G., Chomienne, V., Ekström, S., et al.: Impact of mass-loss on the evolution and pre-supernova properties of red supergiants. Astron. Astrophys. 575, A60 (2015). https://doi.org/10.1051/0004-6361/201424671. arXiv:1410.8721 [astro-ph.SR]
Mossoux, E., Rauw, G.: LIFELINE: the program for the simulation of the X-ray line profiles in massive colliding wind binaries. Astron. Astrophys. 646, A89 (2021). https://doi.org/10.1051/0004-6361/202039437. arXiv:2011.14866 [astro-ph.IM]
Mullan, D.J.: Displaced narrow absorption components in the spectra of mass-losing OB stars: indications of corotating interaction regions? Astron. Astrophys. 165, 157–162 (1986)
Nazé, Y., Koenigsberger, G., Pittard, J.M., et al.: A changing wind collision. Astrophys. J. 853(2), 164 (2018). https://doi.org/10.3847/1538-4357/aaa29c. arXiv:1712.05625 [astro-ph.SR]
Nugis, T., Lamers, H.J.G.L.M.: Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters. Astron. Astrophys. 360, 227–244 (2000)
Oskinova, L.M., Hamann, W.R., Feldmeier, A.: Neglecting the porosity of hot-star winds can lead to underestimating mass-loss rates. Astron. Astrophys. 476(3), 1331–1340 (2007). https://doi.org/10.1051/0004-6361:20066377. arXiv:0704.2390
Owocki, S.P.: Dynamical simulation of the “velocity-porosity” reduction in observed strength of stellar wind lines. In: Hamann, W.R., Feldmeier, A., Oskinova, L.M. (eds.) Clumping in Hot-Star Winds, p. 121 (2008)
Parkin, E.R., Pittard, J.M., Corcoran, M.F., et al.: 3D modelling of the colliding winds in \(\eta\) Carinae—evidence for radiative inhibition. Mon. Not. R. Astron. Soc. 394(4), 1758–1774 (2009). https://doi.org/10.1111/j.1365-2966.2009.14475.x. arXiv:0901.0862 [astro-ph.HE]
Paxton, B., Bildsten, L., Dotter, A., et al.: Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192(1), 3 (2011). https://doi.org/10.1088/0067-0049/192/1/3. arXiv:1009.1622 [astro-ph.SR]
Peters, G.J., Gayley, K.G., Ignace, R., et al.: Ultraviolet spectropolarimetry: conservative and nonconservative mass transfer in OB interacting binaries. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04106-w
Petrovic, J., Pols, O., Langer, N.: Are luminous and metal-rich Wolf-Rayet stars inflated? Astron. Astrophys. 450, 219–225 (2006). https://doi.org/10.1051/0004-6361:20035837
Pittard, J.M.: 3D models of radiatively driven colliding winds in massive O+O star binaries—I. Hydrodynamics. Mon. Not. R. Astron. Soc. 396(3), 1743–1763 (2009). https://doi.org/10.1111/j.1365-2966.2009.14857.x. arXiv:0904.0164 [astro-ph.SR]
Rauw, G., Nazé, Y., Carrier, F., et al.: The strange case of the massive binary HD 149404. Astron. Astrophys. 368, 212–224 (2001). https://doi.org/10.1051/0004-6361:20000527
Rauw, G., Vreux, J.M., Stevens, I.R., et al.: Phase-resolved X-ray and optical spectroscopy of the massive binary HD 93403. Astron. Astrophys. 388, 552–562 (2002). https://doi.org/10.1051/0004-6361:20020523
Rauw, G., Mossoux, E., Nazé, Y.: Fe XXV line profiles in colliding wind binaries. New Astron. 43, 70–79 (2016). https://doi.org/10.1016/j.newast.2015.08.002. arXiv:1508.04965 [astro-ph.SR]
Russell, C.M.P., Wang, Q.D., Cuadra, J.: Modelling the thermal X-ray emission around the Galactic Centre from colliding Wolf-Rayet winds. Mon. Not. R. Astron. Soc. 464(4), 4958–4965 (2017). https://doi.org/10.1093/mnras/stw2584. arXiv:1607.01562 [astro-ph.HE]
Sana, H., Rauw, G., Gosset, E.: HD 152248: evidence for a colliding wind interaction. Astron. Astrophys. 370, 121–135 (2001). https://doi.org/10.1051/0004-6361:20010221
Sana, H., Nazé, Y., O’Donnell, B., et al.: The massive binary HD 152218 revisited: a new colliding wind system in NGC 6231. New Astron. 13(4), 202–215 (2008). https://doi.org/10.1016/j.newast.2007.07.008. arXiv:0801.3753
Sana, H., de Mink, S.E., de Koter, A., et al.: Binary interaction dominates the evolution of massive stars. Science 337(6093), 444 (2012). https://doi.org/10.1126/science.1223344. https://ui.adsabs.harvard.edu/#abs/2012Sci...337..444S/abstract
Sander, A., Hamann, W.R., Todt, H.: The Galactic WC stars. Stellar parameters from spectral analyses indicate a new evolutionary sequence. Astron. Astrophys. 540, A144 (2012). https://doi.org/10.1051/0004-6361/201117830. arXiv:1201.6354 [astro-ph.SR]
Sander, A., Shenar, T., Hainich, R., et al.: On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres. Astron. Astrophys. 577, A13 (2015). https://doi.org/10.1051/0004-6361/201425356. arXiv:1503.01338 [astro-ph.SR]
Sander, A.A.C., Vink, J.S., Hamann, W.R.: Driving classical Wolf-Rayet winds: a \(\Gamma\)- and Z-dependent mass-loss. Mon. Not. R. Astron. Soc. 491(3), 4406–4425 (2020). https://doi.org/10.1093/mnras/stz3064. arXiv:1910.12886 [astro-ph.SR]
Schulte-Ladbeck, R.E., Nordsieck, K.H., Nook, M.A., et al.: A rotating, expanding disk in the Wolf-Rayet star EZ Canis Majoris? Astrophys. J. Lett. 365, L19 (1990). https://doi.org/10.1086/185878
Schulte-Ladbeck, R.E., Nordsieck, K.H., Code, A.D., et al.: The first linear polarization spectra of Wolf-Rayet stars in the ultraviolet: EZ Canis Majoris and theta MUSCAE. Astrophys. J. Lett. 391, L37 (1992). https://doi.org/10.1086/186393
Scowen, P.A., Gayley, K.G., Ignace, R., et al.: The Polstar high resolution spectropolarimetry MIDEX mission. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04107-9
Shenar, T., Oskinova, L., Hamann, W.R., et al.: A coordinated X-ray and Optical Campaign of the Nearest Massive Eclipsing Binary, \(\delta\) Orionis Aa. IV. A multiwavelength, non-LTE spectroscopic analysis. Astrophys. J. 809(2), 135 (2015). https://doi.org/10.1088/0004-637X/809/2/135. arXiv:1503.03476 [astro-ph.SR]
Shrestha, M., Neilson, H.R., Hoffman, J.L., et al.: Polarization simulations of stellar wind bow-shock nebulae—I. The case of electron scattering. Mon. Not. R. Astron. Soc. 477(1), 1365–1382 (2018). https://doi.org/10.1093/mnras/sty724. arXiv:1712.04958 [astro-ph.SR]
Shrestha, M., Neilson, H.R., Hoffman, J.L., et al.: Polarization simulations of stellar wind bow shock nebulae—II. The case of dust scattering. Mon. Not. R. Astron. Soc. 500(4), 4319–4337 (2021). https://doi.org/10.1093/mnras/staa3508. arXiv:2011.04314 [astro-ph.SR]
Sobolev, V.V.: Moving Envelopes of Stars. Harvard Univ. Press, Cambridge (1960)
St-Louis, N., Moffat, A.F.J., Lapointe, L., et al.: Polarization eclipse model of the Wolf-Rayet binary V444 Cygni with constraints on the Stellar Radii and an estimate of the Wolf-Rayet mass-loss rate. Astrophys. J. 410, 342 (1993a). https://doi.org/10.1086/172751. https://ui.adsabs.harvard.edu/abs/1993ApJ...410..342S/abstract
St-Louis, N., Willis Astron, J., Stevens, I.R.: Ultraviolet observations of selective wind eclipses in Gamma Velorum and evidence for colliding winds. Astrophys. J. 415, 298 (1993b). https://doi.org/10.1086/173165
Stevens, I.R., Blondin, J.M., Pollock, A.M.T.: Colliding winds from early-type stars in binary systems. Astrophys. J. 386, 265 (1992). https://doi.org/10.1086/171013. https://ui.adsabs.harvard.edu/?#abs/1992ApJ...386..265S/abstract
Tuthill, P.G., Monnier, J.D., Danchi, W.C.: A dusty pinwheel nebula around the massive star WR104. Nature 398(6727), 487–489 (1999). https://doi.org/10.1038/19033. arXiv:astro-ph/9904092
ud-Doula, A., Cheung, M.C.M., David-Uraz, A., et al.: Ultraviolet spectropolarimetric diagnostics of hot star magnetospheres. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04097-8
Villar-Sbaffi, A., St-Louis, N., Moffat, A.F.J., et al.: First ever polarimetric detection of a wind-wind interaction region and a misaligned flattening of the wind in the Wolf-Rayet binary CQ Cephei. Astrophys. J. 623(2), 1092–1104 (2005). https://doi.org/10.1086/428830
Vink, J.S., Sander, A.A.C.: Metallicity-dependent wind parameter predictions for OB stars. Mon. Not. R. Astron. Soc. 504(2), 2051–2061 (2021). https://doi.org/10.1093/mnras/stab902. arXiv:2103.12736 [astro-ph.SR]
Vink, J.S., de Koter, A., Lamers, H.J.G.L.M.: Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001). https://doi.org/10.1051/0004-6361:20010127. arXiv:astro-ph/0101509
Williams, P.M.: Variable dust emission by WC type Wolf-Rayet stars observed in the NEOWISE-R survey. Mon. Not. R. Astron. Soc. 488(1), 1282–1300 (2019). https://doi.org/10.1093/mnras/stz1784. arXiv:1906.11595 [astro-ph.SR]
Williams, P.M., van der Hucht, K.A., Pollock, A.M.T., et al.: Multi-frequency variations of the Wolf-Rayet system HD 193793—I. Infrared, X-ray and radio observations. Mon. Not. R. Astron. Soc. 243, 662–684 (1990)
Williams, P.M., Rauw, G., van der Hucht, K.A.: Dust formation by the colliding wind WC5+O9 binary WR19 at periastron passage. Mon. Not. R. Astron. Soc. 395(4), 2221–2225 (2009). https://doi.org/10.1111/j.1365-2966.2009.14681.x. arXiv:0902.4105 [astro-ph.SR]
Wisniewski, J.P., Berdyugin, A., Berdyugina, S., et al.: UV spectropolarimetry with Polstar: protoplanetary disks. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04125-7
Acknowledgements
RI acknowledges funding support from a grant by the National Science Foundation (NSF), AST-2009412. JLH acknowledges support from NSF under award AST-1816944 and from the University of Denver via a 2021 PROF award. Scowen acknowledges his financial support by the NASA Goddard Space Flight Center to formulate the mission proposal for Polstar. Y.N. acknowledges support from the Fonds National de la Recherche Scientifique (Belgium), the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme (contracts linked to XMM-Newton and Gaia). NSL and CEJ wish to thank the National Sciences and Engineering Council of Canada (NSERC) for financial support. A.D.-U. is supported by NASA under award number 80GSFC21M0002. GJP gratefully acknowledges support from NASA grant 80NSSC18K0919 and STScI grants HST-GO-15659.002 and HST-GO-15869.001.
Funding
The Polstar satellite is presently being proposed as a Midex mission to NASA and is currently under evaluation.
Author information
Authors and Affiliations
Contributions
All authors have contributed ideas to motivate the work presented in this paper. Some have provided specific modelling, others proposed data analysis techniques. All contributed to the writing of the text to varying extents.
Corresponding author
Ethics declarations
Competing Interests
To our knowledge, there are no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: UV Spectropolarimetry for Stellar, Interstellar, and Exoplanetary Astrophysics with Polstar. Guest Editors: Paul A. Scowen, Carol E. Jones, René D. Oudmaijer.
Rights and permissions
About this article
Cite this article
St-Louis, N., Gayley, K., Hillier, D.J. et al. UV spectropolarimetry with Polstar: massive star binary colliding winds. Astrophys Space Sci 367, 118 (2022). https://doi.org/10.1007/s10509-022-04102-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-022-04102-0