Abstract
The current consensus is that at least half of the OB stars are formed in binary or multiple star systems. The evolution of OB stars is greatly influenced by whether the stars begin as close binaries, and the evolution of the binary systems depend on whether the mass transfer is conservative or nonconservative. FUV/NUV spectropolarimetry is poised to answer the latter question. This paper discusses how the Polstar spectropolarimetry mission can characterize the degree of nonconservative mass transfer that occurs at various stages of binary evolution, from the initial mass reversal to the late Algol phase, and quantify its amount. The proposed instrument combines spectroscopic and polarimetric capabilities, where the spectroscopy can resolve Doppler shifts in UV resonance lines with 10 km/s precision, and polarimetry can resolve linear polarization with \(10^{-3}\) precision or better. The spectroscopy will identify absorption by mass streams and other plasmas seen in projection against the stellar disk as a function of orbital phase, as well as scattering from extended splash structures, including jets. The polarimetry tracks the light coming from material not seen against the stellar disk, allowing the geometry of the scattering to be tracked, resolving ambiguities left by the spectroscopy and light-curve information. For example, nonconservative mass streams ejected in the polar direction will produce polarization of the opposite sign from conservative transfer accreting in the orbital plane. Time domain coverage over a range of phases of the binary orbit are well supported by the Polstar observing strategy. Special attention will be given to the epochs of enhanced systemic mass loss that have been identified from IUE observations (pre-mass reversal and tangential gas stream impact). We show how the history of systemic mass and angular momentum loss/gain episodes can be inferred via ensemble evolution through the r–q diagram. Combining the above elements will significantly improve our understanding of the mass transfer process and the amount of mass that can escape from the system, an important channel for changing the final mass and ultimate supernova of a large number of massive stars found in binaries at close enough separation to undergo interaction.










Similar content being viewed by others
Data Availability
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
Materials Availability
This research has made use of NASA’s Astrophysics Data System and the SIMBAD database, operated at CDS, Strasbourg, France. The work has also made use of the BeSS database, operated at LESIA, Observatoire de Meudon, France: http://basebe.obspm.fr. This research made use of Astropy, http://www.astropy.org a community-developed core Python package for Astronomy (Robitaille et al. 2013; Price-Whelan et al. 2018).
Notes
These systems are often called close binaries.
In contemporary terminology the star that is losing mass is often called simply the loser and the mass-gaining star the gainer.
References
Barai, P., Gies, D.R., Choi, E., et al.: Mass and angular momentum transfer in the massive Algol binary RY Persei. Astrophys. J. 608(2), 989–1000 (2004). https://doi.org/10.1086/420875. arXiv:astro-ph/0309734
Brown, J.C., McLean, I.S., Emslie, A.G.: Polarisation by Thomas scattering in optically thin stellar envelopes. II. Binary and multiple star envelopes and the determination of binary inclinations. Astron. Astrophys. 68, 415–427 (1978)
Brown, J.C., Aspin, C., Simmons, J.F.L., et al.: The effect of orbital eccentricity on polarimetric binary diagnostics. Mon. Not. R. Astron. Soc. 198, 787–794 (1982). https://doi.org/10.1093/mnras/198.3.787
Carciofi, A.C., Bjorkman, J.E., Zsargó, J.: HDUST3—a chemically realistic, 3-D, NLTE radiative transfer code. In: Eldridge, J.J., Bray, J.C., McClelland, L.A.S., et al. (eds.) The Lives and Death-Throes of Massive Stars, p. 390 (2017). https://doi.org/10.1017/S1743921317002836
Clayton, G.C., Anderson, C.M., Magalhaes, A.M., et al.: The first spectropolarimetric study of the wavelength dependence of interstellar polarization in the ultraviolet. Astrophys. J. Lett. 385, L53 (1992). https://doi.org/10.1086/186276
Deschamps, R., Braun, K., Jorissen, A., et al.: Non-conservative evolution in Algols: where is the matter? Astron. Astrophys. 577, A55 (2015). https://doi.org/10.1051/0004-6361/201424772. arXiv:1502.04957 [astro-ph.SR]
Drechsel, H., Lorenz, R.: Period of SV Centauri continues decreasing. Inf. Bull. Var. Stars 3868, 1 (1993)
Drechsel, H., Rahe, J., Wargau, W., et al.: The interacting early-type contact binary SV Cen. Astron. Astrophys. 110, 246–262 (1982)
Eldridge, J.J., Fraser, M., Smartt, S.J., et al.: The death of massive stars—II. Observational constraints on the progenitors of Type Ibc supernovae. Mon. Not. R. Astron. Soc. 436, 774–795 (2013). https://doi.org/10.1093/mnras/stt1612
Fox, G.K.: Stellar occultation of polarized light from circumstellar electrons. III. General axisymmetric envelopes. Astrophys. J. 379, 663 (1991). https://doi.org/10.1086/170540
Fox, G.K.: The theoretical polarization of pure scattering axisymmetric circumstellar envelopes. Astrophys. J. 435, 372 (1994). https://doi.org/10.1086/174819
Giuricin, G., Mardirossian, F.: Some aspects of mass loss and mass transfer in Algol variables. Astrophys. J. Suppl. Ser. 46, 1–26 (1981). https://doi.org/10.1086/190732
Giuricin, G., Mardirossian, F., Mezzetti, M.: General properties of Algol binaries. Astrophys. J. Suppl. Ser. 52, 35–60 (1983). https://doi.org/10.1086/190858
Harmanec, P., Morand, F., Bonneau, D., et al.: Jet-like structures in \(\beta\) Lyrae. Results of optical interferometry, spectroscopy and photometry. Astron. Astrophys. 312, 879–896 (1996)
Hoffman, J.L., Nordsieck, K.H., Fox, G.K.: Spectropolarimetric evidence for a bipolar flow in beta Lyrae. Astron. J. 115(4), 1576–1591 (1998). https://doi.org/10.1086/300274
Hoffman, J.L., Whitney, B.A., Nordsieck, K.H.: The effect of multiple scattering on the polarization from binary star envelopes. I. Self- and externally illuminated disks. Astrophys. J. 598(1), 572–587 (2003). https://doi.org/10.1086/378770. arXiv:astro-ph/0307261
Ignace, R., Oskinova, L.M., Waldron, W.L., et al.: Phase-dependent X-ray observations of the \(\beta\) Lyrae system. No eclipse in the soft band. Astron. Astrophys. 477(3), L37–L40 (2008). https://doi.org/10.1051/0004-6361:20078871. arXiv:0711.3954
Ignace, R., Fullard, A., Shrestha, M., et al.: Modeling the optical to ultraviolet polarimetric variability from Thomson scattering in colliding-wind binaries. Astrophys. J. 933(1), 5 (2022). https://doi.org/10.3847/1538-4357/ac6fce. arXiv:2205.07612 [astro-ph.SR]
Ivanova, N., Justham, S., Chen, X., et al.: Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013). https://doi.org/10.1007/s00159-013-0059-2. arXiv:1209.4302 [astro-ph.HE]
Jones, C.E., Labadie-Bartz, J., Cotton, D.V., et al.: Ultraviolet spectropolarimetry: on the origin of rapidly rotating B stars. Astrophys. Space Sci., 367 (2022). https://doi.org/10.1007/s10509-022-04127-5
Kondo, Y., McCluskey, G.E., Silvis, J.M.S., et al.: Ultraviolet light curves of beta Lyrae: comparison of OAO A-2, IUE, and Voyager observations. Astrophys. J. 421, 787 (1994). https://doi.org/10.1086/173691
Kriz, S., Harmanec, P.: A hypothesis of the binary origin of Be stars. Bull. Astron. Inst. Czechoslov. 26, 65 (1975)
Langer, N.: Presupernova evolution of massive single and binary stars. Annu. Rev. Astron. Astrophys. 50, 107–164 (2012). https://doi.org/10.1146/annurev-astro-081811-125534. arXiv:1206.5443 [astro-ph.SR]
Laplace, E., Justham, S., Renzo, M., et al.: Different to the core: the pre-supernova structures of massive single and binary-stripped stars (2021). E-prints arXiv:2102.05036 [astro-ph.SR]
Linnell, A.P., Scheick, X.: Does SV Centauri harbor an accretion disk? Astrophys. J. 379, 721 (1991). https://doi.org/10.1086/170547
Linnell, A.P., Peters, G.J., Polidan, R.S.: An improved photometric analysis of SX Aurigae. Astrophys. J. 327, 265 (1988). https://doi.org/10.1086/166187
Lomax, J.R., Hoffman, J.L., Elias II, N.M., et al.: Geometrical constraints on the Hot Spot in Beta Lyrae. Astrophys. J. 750(1), 59 (2012a). https://doi.org/10.1088/0004-637X/750/1/59. arXiv:1108.3015 [astro-ph.SR]
Lomax, J.R., Hoffman, J.L., Elias II, N.M., et al.: Geometrical constraints on the Hot Spot in Beta Lyrae. Astrophys. J. 750(1), 59 (2012b). https://doi.org/10.1088/0004-637X/750/1/59. arXiv:1108.3015 [astro-ph.SR]
Lomax, J.R., Nazé, Y., Hoffman, J.L., et al.: V444 Cygni X-ray and polarimetric variability: radiative and Coriolis forces shape the wind collision region. Astron. Astrophys. 573, A43 (2015). https://doi.org/10.1051/0004-6361/201424468. arXiv:1410.6117 [astro-ph.SR]
Lomax, J.R., Fullard, A.G., Malatesta, M.A., et al.: The complex circumstellar and circumbinary environment of V356 Sgr. Mon. Not. R. Astron. Soc. 464(2), 1936–1947 (2017). https://doi.org/10.1093/mnras/stw2457. arXiv:1609.07489 [astro-ph.SR]
Lubow, S.H., Shu, F.H.: Gas dynamics of semidetached binaries. Astrophys. J. 198, 383–405 (1975). https://doi.org/10.1086/153614
Lubow, S.H., Shu, F.H.: Gas dynamics of semidetached binaries. II. The vertical structure of the stream. Astrophys. J. 207, L53–L55 (1976). https://doi.org/10.1086/182177
Manset, N., Bastien, P.: Polarimetric variations of binary stars. I. Numerical simulations for circular and eccentric binaries in Thomson scattering envelopes. Astron. J. 120(1), 413–429 (2000). https://doi.org/10.1086/301439
Nelson, C.A., Eggleton, P.P.: A complete survey of case a binary evolution with comparison to observed Algol-type systems. Astrophys. J. 552(2), 664–678 (2001). https://doi.org/10.1086/320560. arXiv:astro-ph/0009258
Nordsieck, K.H., Wisniewski, J., Babler, B.L., et al.: Ultraviolet and visible spectropolarimetric variability in P Cygni. In: de Groot, M., Sterken, C. (eds.) P Cygni 2000: 400 Years of Progress, p. 261 (2001). astro-ph/0102073
Paczyński, B.: Evolutionary processes in close binary systems. Annu. Rev. Astron. Astrophys. 9, 183 (1971). https://doi.org/10.1146/annurev.aa.09.090171.001151
Peters, G.J.: The H\(\alpha\) emitting regions of the accretion disks in ALGOLS. Space Sci. Rev. 50(1–2), 9–22 (1989). https://doi.org/10.1007/BF00215915
Peters, G.J.: The Algol-type binaries. In: Vanbeveren, D. (ed.) The Influence of Binaries on Stellar Population Studies, p. 79 (2001). https://doi.org/10.1007/978-94-015-9723-4_6
Peters, G.J.: Bipolar jets, hot interaction regions, and colliding winds in OB interacting binaries. In: Hartkopf, W.I., Harmanec, P., Guinan, E.F. (eds.) Binary Stars as Critical Tools & Tests in Contemporary Astrophysics, pp. 148–153 (2007). https://doi.org/10.1017/S174392130700395X
Peters, G.J., Polidan, R.S.: Evidence for a high-temperature accretion region in Algol-type binarysystems. Astrophys. J. 283, 745–759 (1984). https://doi.org/10.1086/162359
Peters, G.J., Polidan, R.S.: Eclipse mapping of the hot circumstellar plasma in Algol binaries. Astron. Nachr. 325(3), 225–228 (2004). https://doi.org/10.1002/asna.200310224
Plavec, M.: Mass exchange in binary stars. Publ. Astron. Soc. Pac. 82(489), 957 (1970). https://doi.org/10.1086/128996
Plavec, M.: Final remarks on the binary hypothesis for the be stars. In: Slettebak, A. (ed.) Be and Shell Stars, p. 439 (1976)
Plavec, M.J.: IUE observations of long period eclipsing binaries: a study of accretion onto non-degenerate stars. In: Plavec, M.J., Popper, D.M., Ulrich, R.K. (eds.) Close Binary Stars: Observations and Interpretation, pp. 251–261 (1980)
Plavec, M.J.: Far-ultraviolet emission lines in U Cephei: evidence for a hot, turbulent circumstellar envelope. Astrophys. J. 275, 251–270 (1983). https://doi.org/10.1086/161530
Plavec, M., Polidan, R.S.: The ALGOLS, red spectra, BE stars, and even neutrinos. In: Eggleton, P., Mitton, S., Whelan, J. (eds.) Structure and Evolution of Close Binary Systems, p. 289 (1976)
Price-Whelan, A.M., Sipőcz, B.M., et al. (Astropy Collaboration): The Astropy project: building an open-science project and status of the v2.0 core package. Astron. J. 156(3), 123 (2018). https://doi.org/10.3847/1538-3881/aabc4f. arXiv:1801.02634 [astro-ph.IM]
Robitaille, T.P., Tollerud, E.J., et al. (Astropy Collaboration): Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013). https://doi.org/10.1051/0004-6361/201322068. arXiv:1307.6212 [astro-ph.IM]
Sana, H., de Mink, S.E., de Koter, A., et al.: Binary interaction dominates the evolution of massive stars. Science 337, 444 (2012). https://doi.org/10.1126/science.1223344
Sana, H., de Koter, A., de Mink, S.E., et al.: The VLT-FLAMES Tarantula Survey. VIII. Multiplicity properties of the O-type star population. Astron. Astrophys. 550, A107 (2013). https://doi.org/10.1051/0004-6361/201219621
Scowen, P., Gayley, K., Ignace, R. et al.: The polstar high resolution spectropolarimetry MIDEX mission. Astrophys. Space Sci. 367 (2022). https://doi.org/10.1007/s10509-022-04107-9
Shrestha, M., Neilson, H.R., Hoffman, J.L., et al.: Polarization simulations of stellar wind bow-shock nebulae—I. The case of electron scattering. Mon. Not. R. Astron. Soc. 477(1), 1365–1382 (2018). https://doi.org/10.1093/mnras/sty724, arXiv:1712.04958 [astro-ph.SR]
Simmons, J.F.L.: Analytic treatment of polarization by arbitrary scattering mechanisms in circumstellar envelopes. I—single stars. Mon. Not. R. Astron. Soc. 200, 91–113 (1982). https://doi.org/10.1093/mnras/200.1.91
Simmons, J.F.L.: Analytic treatment of polarization by arbitrary scattering mechanisms in circumstellar envelopes. II—binary stars. Mon. Not. R. Astron. Soc. 205, 153–170 (1983). https://doi.org/10.1093/mnras/205.1.153
St-Louis, N., Gayley, K.G., Hillier, D.J., et al.: UV spectropolarimetry with Polstar: massive star binary colliding winds. Astrophys. Space Sci. 9999 (2022). Topical Collection. https://doi.org/10.1007/s10509-022-04102-0
Sudar, D., Harmanec, P., Lehmann, H., et al.: UX Monocerotis as a W Serpentis binary. Astron. Astrophys. 528, A146 (2011). https://doi.org/10.1051/0004-6361/201014920. arXiv:1103.1766 [astro-ph.SR]
Tauris, T.M., Kramer, M., Freire, P.C.C., et al.: Formation of double neutron star systems. Astrophys. J. 846, 170 (2017). https://doi.org/10.3847/1538-4357/aa7e89
Taylor, M., Code, A.D., Nordsieck, K.H., et al.: First ultraviolet spectropolarimetry of hot supergiants. Astrophys. J. 382, L85 (1991). https://doi.org/10.1086/186218
van Rensbergen, W., De Greve, J.P., De Loore, C., et al.: Spin-up and hot spots can drive mass out of a binary. Astron. Astrophys. 487(3), 1129–1138 (2008). https://doi.org/10.1051/0004-6361:200809943. arXiv:0804.1215
van Rensbergen, W., De Greve, J.P., Mennekens, N., et al.: Mass loss out of close binaries. Case A Roche lobe overflow. Astron. Astrophys. 510, A13 (2010). https://doi.org/10.1051/0004-6361/200913272. arXiv:0908.2021 [astro-ph.SR]
Wang, L., Gies, D.R., Peters, G.J., et al.: The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy. Astron. J. 161(5), 248 (2021). https://doi.org/10.3847/1538-3881/abf144. arXiv:2103.13642 [astro-ph.SR]
Whitney, B.A., Wood, K., Bjorkman, J.E., et al.: HO-CHUNK: Radiation Transfer code (2017). Record ascl:1711.013
Wood, K., Bjorkman, J.E., Whitney, B.A., et al.: The effect of multiple scattering on the polarization from axisymmetric circumstellar envelopes. I. Pure Thomson scattering envelopes. Astrophys. J. 461, 828 (1996). https://doi.org/10.1086/177105
Yoon, S.C.: Evolutionary models for Type Ib/c supernova progenitors. Publ. Astron. Soc. Aust. 32, e015 (2015). https://doi.org/10.1017/pasa.2015.16. arXiv:1504.01205
Zhao, M., Gies, D., Monnier, J.D., et al.: First resolved images of the eclipsing and interacting binary \(\beta\) Lyrae. Astrophys. J. 684(2), L95 (2008). https://doi.org/10.1086/592146. arXiv:0808.0932 [astro-ph]
Funding
GJP gratefully acknowledges support from NASA grant 80NSSC18K0919 and STScI grants HST-GO-15659.002 and HST-GO-15869.001. RI acknowledges funding support from a grant by the National Science Foundation (NSF), AST-2009412. JLH acknowledges support from NSF under award AST-1816944 and from the University of Denver via a 2021 PROF award. YN acknowledges support from the Fonds National de la Recherche Scientifique (Belgium), the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme (contracts linked to XMM-Newton and Gaia). Scowen acknowledges his financial support by the NASA Goddard Space Flight Center to formulate the mission proposal for Polstar.
Author information
Authors and Affiliations
Contributions
All authors shared ideas that motivated this work. We showed how FUV/NUV spectroscopy and spectropolarimetry is key to understanding the evolution of OB close binaries, especially systemic mass and angular momentum loss and transfer. All authors contributed to the writing of the paper. KGG computed the evolutionary tracks in the r-q diagram presented in Sect. 2 and shown in Fig. 1. GJP and KGG were the main contributors to Sects. 2 and 3. RI and JLH contributed the calculations and text for Sect. 4. GJP wrote Sect. 5.
Corresponding author
Ethics declarations
Competing Interests
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: UV Spectropolarimetry for Stellar, Interstellar, and Exoplanetary Astrophysics with Polstar. Guest Editors: Paul A. Scowen, Carol E. Jones, René D. Oudmaijer.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Peters, G.J., Gayley, K.G., Ignace, R. et al. Ultraviolet spectropolarimetry: conservative and nonconservative mass transfer in OB interacting binaries. Astrophys Space Sci 367, 119 (2022). https://doi.org/10.1007/s10509-022-04106-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-022-04106-w