Skip to main content

    Victoria Campuzano

    Williams–Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by a distinctive cognitive phenotype for which there are currently no effective treatments. We investigated the progression of behavioral deficits present... more
    Williams–Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by a distinctive cognitive phenotype for which there are currently no effective treatments. We investigated the progression of behavioral deficits present in WBS complete deletion (CD) mice, after chronic treatment with curcumin, verapamil, and a combination of both. These compounds have been proven to have beneficial effects over different cognitive aspects of various murine models and, thus, may have neuroprotective effects in WBS. Treatment was administered orally dissolved in drinking water. A set of behavioral tests demonstrated the efficiency of combinatorial treatment. Some histological and molecular analyses were performed to analyze the effects of treatment and its underlying mechanism. CD mice showed an increased density of activated microglia in the motor cortex and CA1 hippocampal region, which was prevented by co-treatment. Behavioral improvement correlated with the molecular recovery of ...
    Objective: We investigated the effect of a potent TGFβ (transforming growth factor β) inhibitor peptide (P144) from the betaglycan/TGFβ receptor III on aortic aneurysm development in a Marfan syndrome mouse model. Approach and Results: We... more
    Objective: We investigated the effect of a potent TGFβ (transforming growth factor β) inhibitor peptide (P144) from the betaglycan/TGFβ receptor III on aortic aneurysm development in a Marfan syndrome mouse model. Approach and Results: We used a chimeric gene encoding the P144 peptide linked to apolipoprotein A-I via a flexible linker expressed by a hepatotropic adeno-associated vector. Two experimental approaches were performed: (1) a preventive treatment where the vector was injected before the onset of the aortic aneurysm (aged 4 weeks) and followed-up for 4 and 20 weeks and (2) a palliative treatment where the vector was injected once the aneurysm was formed (8 weeks old) and followed-up for 16 weeks. We evaluated the aortic root diameter by echocardiography, the aortic wall architecture and TGFβ signaling downstream effector expression of pSMAD2 and pERK1/2 by immunohistomorphometry, and Tgfβ1 and Tgfβ2 mRNA expression levels by real-time polymerase chain reaction. Marfan syndr...
    Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of 26-28 genes at chromosome band 7q11.23. The complete deletion (CD) mouse model mimics the most common deletion found in WBS patients and... more
    Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of 26-28 genes at chromosome band 7q11.23. The complete deletion (CD) mouse model mimics the most common deletion found in WBS patients and recapitulates most neurologic features of the disorder along with some cardiovascular manifestations leading to significant cardiac hypertrophy with increased cardiomyocytes' size. Epigallocatechin-3-gallate (EGCG), the most abundant catechin found in green tea, has been associated with potential health benefits, both on cognition and cardiovascular phenotypes, through several mechanisms. We aimed to investigate the effects of green tea extracts on WBS-related phenotypes through a phase I clinical trial in mice. After feeding CD animals with green tea extracts dissolved in the drinking water, starting at three different time periods (prenatal, youth and adulthood), a set of behavioral tests and several anatomical, histological and molecular anal...
    Two Phycomyces genes, madI and madJ, which are involved in phototropism, were characterized by recombination and complementation analyses. The madI gene was located on linkage group IV of the genetic map of Phycomyces, 27 map units away... more
    Two Phycomyces genes, madI and madJ, which are involved in phototropism, were characterized by recombination and complementation analyses. The madI gene was located on linkage group IV of the genetic map of Phycomyces, 27 map units away from the gene carA. Complementation and recombination studies involving the genes madD, madE, madF, and madG, in combination with previous genetic studies, show that the recently isolated mad-407 mutation defines a novel behavioural gene, madJ, of Phycomyces. A regulatory role of the madJ gene product in the light-sensory transduction pathway is suggested.
    A total of seven pyrimidine auxotrophs of Phycomyces were isolated from among 5-fluoroorotate acid (5-FOA)-resistant mutants. They were classified by complementation into two groups. A representative mutant strain belonging to one group... more
    A total of seven pyrimidine auxotrophs of Phycomyces were isolated from among 5-fluoroorotate acid (5-FOA)-resistant mutants. They were classified by complementation into two groups. A representative mutant strain belonging to one group was deficient in orotate phosphoribosyl transferase (OPRTase; EC 2.4.2.10) activity; the mutant strain belonging to the second group was deficient in orotidine-5'-monophosphate decarboxylase (OMPdecase; EC 4.1.1.23). These mutants are defective in the genes pyrF and pyrG respectively. The results from random spore analysis, tetrad analysis, and gene-centromere distances showed that these two markers are located in linkage group VI, with pyrG being a proximal marker and pyrF a distal one.
    Williams syndrome is a developmental disorder with an estimated prevalence of 1 in 7,500 newborns. Its phenotype is characterized by distinctive facial features, mild to moderate mental retardation and general cognitive deficits with a... more
    Williams syndrome is a developmental disorder with an estimated prevalence of 1 in 7,500 newborns. Its phenotype is characterized by distinctive facial features, mild to moderate mental retardation and general cognitive deficits with a non-uniform profile, having problems in some areas (psychomotricity, visuospatial integration) and relative preservation of others (language, musicality), friendly personality, occasional hypercalcemia of infancy, and a vasculopathy with supravalvular aortic stenosis. Williams syndrome is caused by a submicroscopic deletion of 1.55 Mb in the chromosome band 7q11.23, which includes 26-28 genes. The mutational mechanism consists in a misalignment between regions of almost identical sequence and the subsequent unequal recombination. The reciprocal product of this rearrangement is the duplication of this region, causing a language specific disorder. Clinical-molecular correlations establishment through a good phenotypic characterization and the precise an...
    Williams-Beuren syndrome is a developmental multisystemic disorder caused by a recurrent 1.55-1.83 Mb heterozygous deletion on human chromosome band 7q11.23. Through chromosomal engineering with the cre-loxP system, we have generated mice... more
    Williams-Beuren syndrome is a developmental multisystemic disorder caused by a recurrent 1.55-1.83 Mb heterozygous deletion on human chromosome band 7q11.23. Through chromosomal engineering with the cre-loxP system, we have generated mice with an almost complete deletion (CD) of the conserved syntenic region on chromosome 5G2. Heterozygous CD mice were viable, fertile and had a normal lifespan, while homozygotes were early embryonic lethal. Transcript levels of most deleted genes were reduced 50% in several tissues, consistent with gene dosage. Heterozygous mutant mice showed postnatal growth delay with reduced body weight and craniofacial abnormalities such as small mandible. The cardiovascular phenotype was only manifested with borderline hypertension, mildly increased arterial wall thickness and cardiac hypertrophy. The neurobehavioral phenotype revealed impairments in motor coordination, increased startle response to acoustic stimuli and hypersociability. Mutant mice showed a ge...
    Research Interests:
    Friedreich's ataxia, the most common inherited ataxia, is associated with a mutation that consists of an unstable expansion of GAA repeats in the first intron of the frataxin gene on chromosome 9, which encodes a... more
    Friedreich's ataxia, the most common inherited ataxia, is associated with a mutation that consists of an unstable expansion of GAA repeats in the first intron of the frataxin gene on chromosome 9, which encodes a protein of unknown function. We studied 187 patients with autosomal recessive ataxia, determined the size of the GAA expansions, and analyzed the clinical manifestations in relation to the number of GAA repeats and the duration of disease. One hundred forty of the 187 patients, with ages at onset ranging from 2 to 51 years, were homozygous for a GAA expansion that had 120 to 1700 repeats of the trinucleotides. About one quarter of the patients, despite being homozygous, had atypical Friedreich's ataxia; they were older at presentation and had intact tendon reflexes. Larger GAA expansions correlated with earlier age at onset and shorter times to loss of ambulation. The size of the GAA expansions (and particularly that of the smaller of each pair) was associated with the frequency of cardiomyopathy and loss of reflexes in the upper limbs. The GAA repeats were unstable during transmission. The clinical spectrum of Friedreich's ataxia is broader than previously recognized, and the direct molecular test for the GAA expansion on chromosome 9 is useful for diagnosis, determination of prognosis, and genetic counseling.
    Friedreich's ataxia is due to loss of function mutations in the gene encoding frataxin (FRDA). Frataxin is a protein of unknown function. In situ hybridization analyses revealed that mouse frataxin expression correlates well with... more
    Friedreich's ataxia is due to loss of function mutations in the gene encoding frataxin (FRDA). Frataxin is a protein of unknown function. In situ hybridization analyses revealed that mouse frataxin expression correlates well with the main site of neurodegeneration, but the expression pattern is broader than expected from the pathology of the disease. Frataxin mRNA is predominantly expressed in tissues with a high metabolic rate, including liver, kidney, brown fat and heart. We found that mouse and yeast frataxin homologues contain a potential mitochondrial targeting sequence in their N-terminal domains and that disruption of the yeast gene results in mitochondrial dysfunction. Finally, tagging experiments demonstrate that human frataxin co-localizes with a mitochondrial protein. Friedreich's ataxia is therefore a mitochondrial disease caused by a mutation in the nuclear genome.
    Pyrimidine auxotrophs of Mucor circinelloides were isolated after mutagenesis with nitrosoguanidine and selected for resistance to 5-fluoroorotate. These mutants were genetically and biochemically characterized and found to be deficient... more
    Pyrimidine auxotrophs of Mucor circinelloides were isolated after mutagenesis with nitrosoguanidine and selected for resistance to 5-fluoroorotate. These mutants were genetically and biochemically characterized and found to be deficient either in orotidine-5'-monophosphate decarboxylase (OMPdecase) activity or in orotate phosphoribosyl transferase (OPRTase) activity. Different circular DNA molecules containing the homologous pyrG gene were used to transform a representative OMPdecase-deficient strain to uracil prototrophy. Southern analysis, as well as mitotic stability analysis of the transformants, showed that the transforming DNA is always maintained extrachromosomally. The smallest fragment tested that retained both the capacity to complement the pyrG4 mutation and the ability to be maintained extrachromosomally when cloned in a suitable vector is a 1.85 kb M. circinelloides genomic DNA fragment. This fragment consists of the pyrG coding region flanked by 606 nucleotides at the 5' and 330 nucleotides at the 3' ends, respectively. Sequence analysis reveals that it does not share any element in common with another M. circinelloides genomic DNA fragment which also promotes autonomous replication in this organism, except those related to transcription. Furthermore, it differs from elements which have been shown to be involved in autonomous replication in other fungal systems. An equivalent plasmid harbouring the heterologous Phycomyces blakesleeanus pyrG gene yielded lower transformation rates, but the transforming DNA was also maintained extrachromosomally. Our results suggest that autonomous replication in M. circinelloides may be driven by elements normally present in nuclear coding genes.
    Only eight genes are known to be involved in the phototropic response of Phycomyces (madA-H). Mutants affected in these genes have played a major role in the analysis of photosensory transduction processes in this system. A set of new... more
    Only eight genes are known to be involved in the phototropic response of Phycomyces (madA-H). Mutants affected in these genes have played a major role in the analysis of photosensory transduction processes in this system. A set of new mutants isolated by Alvarez et al. (1989) that are unable to bend towards dim unilateral blue light were studied by complementation and recombination. Two of these mutants have mutations in madE, one has a mutation in madF and one is a double madE madF mutant. The three remaining mutants tested did not complement each other and showed positive complementation with strains carrying mutations in the genes madA, madB, and madC, indicating that they carried mutations in a new gene designated madI. Recombination analysis showed that madI is unlinked to madA, madB and madC.
    A 3.2-kb BamHI genomic DNA fragment containing the pyrG gene of Mucor circinelloides was isolated by heterologous hybridization using a pyrG cDNA clone of Phycomyces blakesleeanus as the probe. The complete nucleotide sequence of the M.... more
    A 3.2-kb BamHI genomic DNA fragment containing the pyrG gene of Mucor circinelloides was isolated by heterologous hybridization using a pyrG cDNA clone of Phycomyces blakesleeanus as the probe. The complete nucleotide sequence of the M. circinelloides pyrG gene encoding orotidine-5'-monophosphate decarboxylase (OMPD) was determined and the transcription start points (tsp) were mapped by primer extension analysis. The predicted amino acid sequence showed homology with the OMPD sequences reported from other filamentous fungi, with 96% similarity with the OMPD of P. blakesleeanus. Analysis of the sequence revealed the presence of two short introns whose length and location were confirmed by sequencing a cDNA clone and comparing this with its genomic counterpart. The intron splice sites and the 5'- and 3'-noncoding flanking regions show general features of fungal genes. Northern-blot hybridization revealed the pyrG transcript to be approx. 1.0 kb. The M. circinelloides pyrG cDNA clone was able to complement the pyrF::Mu-1 mutation of Escherichia coli when inserted between bacterial expression signals. Additionally, the genomic clone complemented the M. circinelloides pyrG4 mutation. When an M. circinelloides autonomous replication sequence was included in the transforming plasmid, the average transformation frequency obtained was 600 to 800 transformants per micrograms DNA and per 10(6) viable protoplasts.
    General transcription factor (TFII-I) is a multi-functional protein involved in the transcriptional regulation of critical developmental genes, encoded by the GTF2I gene located on chromosome 7q11.23. Haploinsufficiency at GTF2I has been... more
    General transcription factor (TFII-I) is a multi-functional protein involved in the transcriptional regulation of critical developmental genes, encoded by the GTF2I gene located on chromosome 7q11.23. Haploinsufficiency at GTF2I has been shown to play a major role in the neurodevelopmental features of Williams-Beuren syndrome (WBS). Identification of genes regulated by TFII-I is thus critical to detect molecular determinants of WBS as well as to identify potential new targets for specific pharmacological interventions, which are currently absent. We performed a microarray screening for transcriptional targets of TFII-I in cortex and embryonic cells from Gtf2i mutant and wild-type mice. Candidate genes with altered expression were verified using real-time PCR. A novel motif shared by deregulated genes was found and chromatin immunoprecipitation assays in embryonic fibroblasts were used to document in vitro TFII-I binding to this motif in the promoter regions of deregulated genes. Interestingly, the PI3K and TGFβ signaling pathways were over-represented among TFII-I-modulated genes. In this study we have found a highly conserved DNA element, common to a set of genes regulated by TFII-I, and identified and validated novel in vivo neuronal targets of this protein affecting the PI3K and TGFβ signaling pathways. Overall, our data further contribute to unravel the complexity and variability of the different genetic programs orchestrated by TFII-I.
    A total of seven pyrimidine auxotrophs of Phycomyces were isolated from among 5-fluoroorotate acid (5-FOA)-resistant mutants. They were classified by complementation into two groups. A representative mutant strain belonging to one group... more
    A total of seven pyrimidine auxotrophs of Phycomyces were isolated from among 5-fluoroorotate acid (5-FOA)-resistant mutants. They were classified by complementation into two groups. A representative mutant strain belonging to one group was deficient in orotate phosphoribosyl transferase (OPRTase; EC 2.4.2.10) activity; the mutant strain belonging to the second group was deficient in orotidine-5'-monophosphate decarboxylase (OMPdecase; EC 4.1.1.23). These mutants are defective in the genes pyrF and pyrG respectively. The results from random spore analysis, tetrad analysis, and gene-centromere distances showed that these two markers are located in linkage group VI, with pyrG being a proximal marker and pyrF a distal one.
    Two Phycomyces genes, madI and madJ, which are involved in phototropism, were characterized by recombination and complementation analyses. The madI gene was located on linkage group IV of the genetic map of Phycomyces, 27 map units away... more
    Two Phycomyces genes, madI and madJ, which are involved in phototropism, were characterized by recombination and complementation analyses. The madI gene was located on linkage group IV of the genetic map of Phycomyces, 27 map units away from the gene carA. Complementation and recombination studies involving the genes madD, madE, madF, and madG, in combination with previous genetic studies, show that the recently isolated mad-407 mutation defines a novel behavioural gene, madJ, of Phycomyces. A regulatory role of the madJ gene product in the light-sensory transduction pathway is suggested.