Skip to main content

    Tim Vangerven

    ABSTRACT The performance of polymer solar cells is strongly dependent on the morphology of the photoactive layer, which can be optimized by tuning the polymer side chain pattern. Whereas most studies focus on length and bulkiness, the... more
    ABSTRACT The performance of polymer solar cells is strongly dependent on the morphology of the photoactive layer, which can be optimized by tuning the polymer side chain pattern. Whereas most studies focus on length and bulkiness, the side chain density receives much less attention. In this work, the effect of the number of side chains on PCPDTQx(2F) low bandgap copolymers on material properties and solar cell characteristics is investigated. The active layer morphology is strongly affected, affording more favorable finely intermixed blends when decreasing the side chain density. As a result, the efficiency increases to a maximum of 5.63% for the device based on the copolymer with intermediate side chain density. Moreover, removal of the side chains also has a positive effect on device stability under prolonged thermal stress. A single structural parameter—alkyl side chain density—is hence used for simultaneous enhancement of both solar cell efficiency and lifetime.
    ABSTRACT The molecular weight of poly(3-hexylthiophene) is an important factor influencing the photovoltaic properties of bulk heterojunction organic solar cells based on this material. However, since different synthetic processes or... more
    ABSTRACT The molecular weight of poly(3-hexylthiophene) is an important factor influencing the photovoltaic properties of bulk heterojunction organic solar cells based on this material. However, since different synthetic processes or repetitive soxhlet extractions - generally applied to obtain the different molecular weight batches under study - result in samples with simultaneously varying regioregularity (RR) and polydispersity index (PDI), it has not been possible yet to find an unambiguous correlation between the molecular weight and the photovoltaic performance. In the present work preparative gel permeation chromatography is introduced as a versatile technique to fractionate the donor polymer and thereby obtain a systematic variation of the number average molecular weight (Mn = 11-91 kg mol−1) with an almost constant PDI and RR. Polymer crystallinity and conjugation length are evaluated by UV-Vis spectroscopy, rapid heat-cool calorimetry and selected area electron diffraction, and are found to be deeply affected by Mn. This in turn influences the behavior of the charge transfer state energy, measured via Fourier transform photocurrent spectroscopy, and therefore the open-circuit voltage. The short-circuit current is also affected by Mn, but mainly due to a change in absorption coefficient. The apparent recombination order is shown to be linked to the morphology of the polymer:fullerene blend and is determined using transient photovoltage and photocurrent techniques. Finally, a correlation between recombination and fill factor is also suggested.
    ABSTRACT In the field of polymer solar cells, improving photovoltaic performance has been the main driver over the past decade. To achieve high power conversion efficiencies, a plethora of new photoactive donor polymers and fullerene... more
    ABSTRACT In the field of polymer solar cells, improving photovoltaic performance has been the main driver over the past decade. To achieve high power conversion efficiencies, a plethora of new photoactive donor polymers and fullerene derivatives have been developed and blended together in bulk heterojunction active layers. Simultaneously, further optimization of the device architecture is also of major importance. In this respect, we report on the use of specific types of electron transport layers to boost the inherent I–V properties of polymer solar cell devices, resulting in a considerable gain in overall photovoltaic output. Imidazolium‐substituted polythiophenes are introduced as appealing electron transport materials, outperforming the currently available analogous conjugated polyelectrolytes, mainly by an increase in short‐circuit current. The molecular weight of the ionic polythiophenes has been identified as a crucial parameter influencing performance. An alcohol‐soluble imidazolium‐substituted polythiophene is fabricated to enhance the photovoltaic performance of polymer solar cells. The conjugated polyelectrolyte is used as an additional electron transport layer, boosting the inherent I–V characteristics of the resulting devices. The ionic polythiophene interlayer is compared with known electron transport materials and shows improved power conversion efficiencies.
    Research Interests:
    ABSTRACT The effect of fluorination on the optoelectronic properties and the polymer:fullerene solar cell characteristics of PCPDTQx-type... more
    ABSTRACT The effect of fluorination on the optoelectronic properties and the polymer:fullerene solar cell characteristics of PCPDTQx-type (poly{4-(2’-ethylhexyl)-4-octyl-4H-cyclopenta[2,1-b:3,4-b’]dithiophene-alt-2,3-bis[5’-(2’’-ethylhexyl)thiophen-2’-yl]quinoxaline}) low bandgap copolymers is reported. The introduction of fluorine atoms on the quinoxaline constituents is an effective way to lower the HOMO and LUMO energy levels of the alternating copolymers, resulting in an enhanced open-circuit voltage for the devices based on the fluorinated polymers (~0.1 V per F added). Furthermore, fluorination also improves the charge carrier mobility in the bulk heterojunction blends. Despite the formation of unfavorable photoactive layer morphologies, the best solar cell performance is obtained for the copolymer prepared from the difluorinated quinoxaline monomer, affording a power conversion efficiency of 5.26% under AM 1.5G irradiation, with an open-circuit voltage of 0.83 V, a short-circuit current density of 11.58 mA cm-2 and a fill factor of 55%.
    ABSTRACT Three distinct low bandgap copolymers are synthesized by the combination of N-(2′-propylpentanoyl)dithieno[3,2-b:2′,3′-d]pyrrole (DTP) and (fluorinated) 2,3-bis[5′-(2”-ethylhexyl)thiophen-2′-yl]quinoxaline (Qx) and these PDTPQx... more
    ABSTRACT Three distinct low bandgap copolymers are synthesized by the combination of N-(2′-propylpentanoyl)dithieno[3,2-b:2′,3′-d]pyrrole (DTP) and (fluorinated) 2,3-bis[5′-(2”-ethylhexyl)thiophen-2′-yl]quinoxaline (Qx) and these PDTPQx derivatives are investigated as electron donor materials in bulk heterojunction polymer solar cells. Due to the DTP N-acylation and the introduction of the Qx units, both the open-circuit voltage (Voc) and the short-circuit current density (Jsc) increase compared to previous devices based on DTP-type donor polymers. Organic solar cells with an average Voc of 0.67 V, a Jsc of 12.57 mA/cm² and a fill factor of 0.54 are obtained, affording a power conversion efficiency of 4.53% (4.81% for the top-performing device), a record value for (N-acyl-)DTP-based polymer solar cells devoid of special interlayer materials. Despite further enhancement of the Voc, the solar cell efficiency declines for the fluorinated PDTPQx copolymers because of the inability to achieve a finely intermixed bulk heterojunction blend nanomorphology.
    Research Interests: