Skip to main content
Ning Bian

    Ning Bian

    ABSTRACTThe mixed-valence oxide Co3O4 nanoparticles, having the normal spinel structure, possess large surface area, active-site surface adsorption properties, and fast ion diffusivities. Consequently, they are widely used in lithium-ion... more
    ABSTRACTThe mixed-valence oxide Co3O4 nanoparticles, having the normal spinel structure, possess large surface area, active-site surface adsorption properties, and fast ion diffusivities. Consequently, they are widely used in lithium-ion batteries, as well as for gas sensing and heterogeneous catalysis applications. In our research, we use a two-step method to synthesize Co3O4–based core-shell nanoparticles (CSNs). Cobalt oxide (Co3O4) nanoparticles were successfully synthesized using a wet synthesis method employing KOH and cobalt acetate. Manganese was incorporated into the Co3O4 structure to synthesize inverted Co3O4@MnxCo3-xO4 CSNs using a hydrothermal method. By adjustment of pH value, we obtained two different morphologies of CSNs, one resulting in pseudo-spherical and octahedron-shaped nanoparticles (PS type) whereas the second type predominantly have a nanoplate (NP type) morphology. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS) have been performed in order to determine the morphological and structural properties of our CSNs, whereas the magnetic properties have been characterized using a superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the CSNs have the same spinel crystal structure throughout the core and shell with an average particle size of ∼19.8 nm. Our Co3O4 nanoparticles, as measured prior to CSN formation, are shown to be antiferromagnetic (AFM) in nature as shown by the magnetization data. Our SQUID data indicate that the core-shell nanoparticles have both AFM (due to the Co3O4 core) and ferrimagnetic properties (of the shell) with a coercivity field of 300 Oe and 150 Oe at 5 K for the PS and NP samples, respectively. The magnetization vs temperature data show a spin order-disorder transition at ∼33 K and a superparamagnetic blocking temperature of ∼90 K for both batches.
    ABSTRACTThe mixed-valence oxide Co3O4 nanoparticles, having the normal spinel structure, possess large surface area, active-site surface adsorption properties, and fast ion diffusivities. Consequently, they are widely used in lithium-ion... more
    ABSTRACTThe mixed-valence oxide Co3O4 nanoparticles, having the normal spinel structure, possess large surface area, active-site surface adsorption properties, and fast ion diffusivities. Consequently, they are widely used in lithium-ion batteries, as well as for gas sensing and heterogeneous catalysis applications. In our research, we use a two-step method to synthesize Co3O4–based core-shell nanoparticles (CSNs). Cobalt oxide (Co3O4) nanoparticles were successfully synthesized using a wet synthesis method employing KOH and cobalt acetate. Manganese was incorporated into the Co3O4 structure to synthesize inverted Co3O4@MnxCo3-xO4 CSNs using a hydrothermal method. By adjustment of pH value, we obtained two different morphologies of CSNs, one resulting in pseudo-spherical and octahedron-shaped nanoparticles (PS type) whereas the second type predominantly have a nanoplate (NP type) morphology. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscop...
     Spread tow carbon fiber composites are receiving increased attention for diverse applications for space, and sports gear due to thin form suitable for deployable structures, and high tensile strengths. Their compressive strengths,... more
     Spread tow carbon fiber composites are receiving increased attention for diverse applications for space, and sports gear due to thin form suitable for deployable structures, and high tensile strengths. Their compressive strengths, however, are much lower than their tensile strengths due to low interlaminar strengths. Herein we report a facile technique to enhance their performance through interlaminar insertion of aligned carbon nanotube (CNT) sheets. The inserted CNT sheets also provide electrical conductivity in the composites even at a low CNT loading below the electrical percolation threshold established for CNT filled composites. Mechanical and electrical characterization was conducted on the CNT sheet inserted composites and the baseline composites. Results show that the CNT sheets increase the compressive strength by 14.7% compared with the baseline. Such an increase is attributed to the increased adhesion provided by the inserted CNT sheets at interface between neighboring plies, which increases the interlaminar shear strength by 33.0% and the interfacial mode-II fracture toughness by 34.6% compared with the baseline composites without inserting CNT sheets. The CNT also provided bridging between carbon fibers in the neighboring plies, contributing to 64.7% of electrical conductivity increase compared with the baseline composites. The findings indicate that the insertion of well-aligned ultrathin CNT sheets in the interlaminar region of a spread tow carbon fiber composite provide significant enhancement in mechanical and electrical performance, paving the path towards applications where both mechanical and electrical performances are crucial, such as for structural health monitoring, lightning protection, and de-icing in aircraft and wind blades. 
    Two different morphologies (pseudo-spherical shaped or PS type and hexagonal nanoplate shaped or NP type) and two different concentrations (0.07 M and 0.1 M) of manganese incorporated Co3O4@MnxCo3-xO4 core-shell nanoparticles (CSNs) were... more
    Two different morphologies (pseudo-spherical shaped or PS type and hexagonal nanoplate shaped or NP type) and two different concentrations (0.07 M and 0.1 M) of manganese incorporated Co3O4@MnxCo3-xO4 core-shell nanoparticles (CSNs) were investigated, respectively. The motivation of this work is to investigate the magnetic properties of, and specifically the exchange bias, between different shaped CSNs and between different Mn-doped CSNs. A two-step synthesis method was utilized to obtain the CSNs: a soft chemical approach was used to obtain Co3O4 nanoparticles and a hydrothermal nano-phase epitaxy was used to obtain inverted bimagnetic core-shell nanoparticles. XRD results showed that F4̅3m crystal symmetry persists throughout the core region and the shell region for both of PS type and NP type CSNs. TEM-EDX results confirmed that manganese ions were successfully incorporated into the Co3O4 spinel structure of the CSNs. TEM and SEM result confirmed that there is no change in shape ...