Skip to main content
Markus Künzler

    Markus Künzler

    Among the invaluable benefits of basidiomycete genomics is the dramatically enhanced insight into the potential capacity to biosynthesize natural products. This study focuses on adenylate-forming reductases, which is a group of natural... more
    Among the invaluable benefits of basidiomycete genomics is the dramatically enhanced insight into the potential capacity to biosynthesize natural products. This study focuses on adenylate-forming reductases, which is a group of natural product biosynthesis enzymes that resembles non-ribosomal peptide synthetases, yet serves to modify one substrate, rather than to condense two or more building blocks. Phylogenetically, these reductases fall in four classes. The phylogeny of Heterobasidion annosum (Russulales) and Serpula lacrymans (Boletales) adenylate-forming reductases was investigated. We identified a previously unrecognized phylogenetic branch within class III adenylate-forming reductases. Three representatives were heterologously produced and their substrate preferences determined in vitro: NPS9 and NPS11 of S. lacrymans preferred l-threonine and benzoic acid, respectively, while NPS10 of H. annosum accepted phenylpyruvic acid best. We also investigated two class IV adenylate-forming reductases of Coprinopsis cinerea, which each were active with l-alanine, l-valine, and l-serine as substrates. Our results show that adenylate-forming reductases are functionally more diverse than previously recognized. As none of the natural products known from the species investigated in this study includes the identified substrates of their respective reductases, our findings may help further explore the diversity of these basidiomycete secondary metabolomes.
    As a precursor of the essential coenzyme A (CoA), pantothenate is present in all organisms. Plants, bacteria, and fungi are known to synthesize this vitamin, while animals must obtain it through their diet.
    Lectins are carbohydrate-binding proteins present in all organisms. Some cytoplasmic lectins from fruiting bodies of dikaryotic fungi are toxic against a variety of parasites and predators. We have isolated, cloned and expressed a novel,... more
    Lectins are carbohydrate-binding proteins present in all organisms. Some cytoplasmic lectins from fruiting bodies of dikaryotic fungi are toxic against a variety of parasites and predators. We have isolated, cloned and expressed a novel, single domain lectin from Macrolepiota procera, designated MpL. Determination of the crystal structure revealed that MpL is a ricin B-like lectin with a β-trefoil fold. Biochemical characterization, site-directed mutagenesis, co-crystallization with carbohydrates, isothermal titration calorimetry and glycan microarray analyses show that MpL forms dimers with the carbohydrate-binding site at the α-repeat, with the highest specificity for terminal N-acetyllactosamine and other β-galactosides. A second putative carbohydrate-binding site with a low affinity for galactose is present at the γ-repeat. In addition, a novel hydrophobic binding site was detected in MpL with specificity for molecules other than carbohydrates. The tissue specific distribution of MpL in the stipe and cap tissue of fruiting bodies and its toxicity towards the nematode Caenorhabditis elegans indicate a function of MpL in protecting fruiting bodies against predators and parasites. Nucleotide sequence data have been deposited in the DDBJ/EMBL/GenBank databases under accession numbers HQ449738 and HQ449739. Structural data have been deposited in the Protein Data Bank under accession codes 4ION, 4IYB, 4IZX and 4J2S.
    We introduce a new family of fungal protease inhibitors with β-trefoil fold from the mushroom Coprinopsis cinerea, named cocaprins, which inhibit both cysteine and aspartic proteases. Two cocaprin-encoding genes are differentially... more
    We introduce a new family of fungal protease inhibitors with β-trefoil fold from the mushroom Coprinopsis cinerea, named cocaprins, which inhibit both cysteine and aspartic proteases. Two cocaprin-encoding genes are differentially expressed in fungal tissues. One is highly transcribed in vegetative mycelium and the other in the stipes of mature fruiting bodies. Cocaprins are small proteins (15 kDa) with acidic isoelectric points that form dimers. The three-dimensional structure of cocaprin 1 showed similarity to fungal β-trefoil lectins. Cocaprins inhibit plant C1 family cysteine proteases with Ki in the micromolar range, but do not inhibit the C13 family protease legumain, which distinguishes them from mycocypins. Cocaprins also inhibit the aspartic protease pepsin with Ki in the low micromolar range. Mutagenesis revealed that the β2-β3 loop is involved in the inhibition of cysteine proteases and that the inhibitory reactive sites for aspartic and cysteine proteases are located at ...
    The direct delivery of molecules and the sampling of endogenous compounds into and from living cells provide powerful means to modulate and study cellular functions. Intracellular injection and extraction remain challenging for fungal... more
    The direct delivery of molecules and the sampling of endogenous compounds into and from living cells provide powerful means to modulate and study cellular functions. Intracellular injection and extraction remain challenging for fungal cells that possess a cell wall. The most common methods for intracellular delivery into fungi rely on the initial degradation of the cell wall to generate protoplasts, a step that represents a major bottleneck in terms of time, efficiency, standardization, and cell viability. Here, we show that fluidic force microscopy enables the injection of solutions and cytoplasmic fluid extraction into and out of individual fungal cells, including unicellular model yeasts and multicellular filamentous fungi. The approach is strain- and cargo-independent and opens new opportunities for manipulating and analyzing fungi. We also perturb individual hyphal compartments within intact mycelial networks to study the cellular response at the single cell level.
    Two recent bioinformatics studies have demonstrated that KEX2-processed repeat proteins are widespread in the fungal kingdom. However, despite the prevalence of KEPs in fungal genomes, only few KEP-derived peptides have been detected and... more
    Two recent bioinformatics studies have demonstrated that KEX2-processed repeat proteins are widespread in the fungal kingdom. However, despite the prevalence of KEPs in fungal genomes, only few KEP-derived peptides have been detected and studied so far.

    And 102 more