Skip to main content

    Lea Rempel

    Bovine (bov) interferon-stimulated gene product 15 (ISG15) is produced in the endometrium in response to conceptus-secreted interferon (IFN)-tau. ISG15 conjugates to endometrial proteins through an enzymatic pathway that is similar to... more
    Bovine (bov) interferon-stimulated gene product 15 (ISG15) is produced in the endometrium in response to conceptus-secreted interferon (IFN)-tau. ISG15 conjugates to endometrial proteins through an enzymatic pathway that is similar to ubiquitinylation. Ubiquitin-activating enzyme 1-like protein (UBE1L) initiates enzymatic conjugation by forming a thioester bond with ISG15, thus preparing it for transfer to the next series of enzymes. The bovUBE1L has not been described. We hypothesized that bovUBE1L was induced by pregnancy and IFN-tau in the endometrium. A 110-kDa protein was purified from bovine endometrial (BEND) cells based on affinity with recombinant (r) glutathione S-transferase (GST)-ISG15. This protein was digested in gel with trypsin. Seven peptides were purified using HPLC, sequenced using liquid chromatography-mass spectroscopy-mass spectroscopy and found to share 43-100% identity with human UBE1L. The full-length bovUBE1L cDNA was isolated from a BEND cell cDNA library, sequenced, and found to share 83% identity with human UBE1L cDNA. Northern blot revealed two mRNAs that were detected in greater (P<0.05) concentrations in endometrium from Day 17-21 pregnant versus nonpregnant cows. Western blots using antihuman UBE1L antibody revealed a similar pattern of pregnancy-associated expression of UBE1L protein in the uterus. The bovUBE1L mRNA was localized, using in situ hybridization, primarily to glandular and luminal epithelium, with more diffuse localization to stroma of the endometrium from pregnant cows. Because bovUBE1L was purified through its interaction with rGST-ISG15 and shares significant amino acid and cDNA sequence identity with human UBE1L, it is concluded that it mediates conjugation of ISG15 to uterine proteins in response to the developing and attaching conceptus.
    Two experiments were conducted to de- termine whether 1) administration of estradiol-17β (E2) implants to barrows elevates serum concentrations of E2 to levels similar to those of adult boars and subse- quently affects the anterior... more
    Two experiments were conducted to de- termine whether 1) administration of estradiol-17β (E2) implants to barrows elevates serum concentrations of E2 to levels similar to those of adult boars and subse- quently affects the anterior pituitary gland IGF system and 2) administration of E2 to barrows increases serum concentrations of E2, serum and anterior pituitary con- centrations of IGF-I, and
    The purpose of this research was to de- termine whether serum concentrations of steroids, IGF- I, and relative amounts of serum IGF-binding proteins (IGFBP) differ in growing boars (n = 11), barrows (n = 11), and gilts (n = 12) from 70 to... more
    The purpose of this research was to de- termine whether serum concentrations of steroids, IGF- I, and relative amounts of serum IGF-binding proteins (IGFBP) differ in growing boars (n = 11), barrows (n = 11), and gilts (n = 12) from 70 to 140 d of age. Pigs of similar age and weight were housed in pens of three or
    Interferon-stimulated gene (ISG) 15 mediates antiviral responses and also is upregulated within the endometrium in response to the developing embryo during early pregnancy. Structurally, ISG15 resembles two ubiquitin domains (30%... more
    Interferon-stimulated gene (ISG) 15 mediates antiviral responses and also is upregulated within the endometrium in response to the developing embryo during early pregnancy. Structurally, ISG15 resembles two ubiquitin domains (30% identical) that are separated by a hinge region. Recombinant (r) bovISG15 is not stable in solution. It was hypothesized that the hinge region contributed to the instability of rbovISG15. Within 24 h of dialysis, rbovISG15 formed complexes as detected by reducing and denaturing SDS-PAGE. However, chemical perturbations of cysteine prevented formation of rbovISG15 complexes over time. Furthermore, a site-directed mutant of rbovISG15 (Cys80Ser) was isomeric and more stable than rbovISG15. Neither wild-type nor mutant rbovISG15 was able to interact with the ISG15 E1 initiating enzyme, UBE1L, in an in vitro pull-down assay. Ovine (ov) ISG15 has three additional amino acids within the hinge region that were hypothesized to increase stability and the degree of interaction with UBE1L because of increased separation of the ubiquitin-like domains. Over time in solution, rovISG15 the level of rovISG15 secondary structure was diminished, whereas the Cys80Ser rovISG15 structure did not change. A GST-Cys80Ser rovISG15 fusion protein had increased structural stability and enhanced protein-protein interaction with UBE1L after dialysis for 48 h, when compared to the GST-rovISG15 fusion protein or rbovISG15. Models of bovISG15, Cys80Ser bovISG15, and ovISG15 were constructed, which confirmed that the hinge region between the two ubiquitin domains destabilizes rbovISG15 in solution.
    Insufficient placenta development is one of the primary causes of fetal death and reduced fetal growth after 35 days of gestation. Between day 22 and 42 the placenta consists of a central highly vascular placenta (HVP), adjacent to the... more
    Insufficient placenta development is one of the primary causes of fetal death and reduced fetal growth after 35 days of gestation. Between day 22 and 42 the placenta consists of a central highly vascular placenta (HVP), adjacent to the fetus, a less vascular placenta (LVP), on either side of the fetus, and necrotic tips (NT). The objective of this study was to comprehensively evaluate uterine-placenta characteristics during early gestation in the gilt and determine time points and physiological changes. Gilts (n=25) were artificially inseminated at first detection of estrus (day 0) and 24h later, and harvested at 22, 27, 32, 37 or 42 days of gestation. Litter size, 12.1±3.4, was similar for all days of gestation. Fetal and placenta weight increased with day of gestation. The greatest increase in placenta weight occurred between 37 and 42 days of gestation. The LVP zones had no measurable fold formation until day 27. Necrotic tips became apparent after 27 days of gestation. Unoccupied areas of the uterus developed folds with changes in endometrial cell size and morphology from day 32 to 42 of gestation. Limited changes occurred in either fetal growth or placenta weight from day 27 through 32 of gestation; however, significant morphological changes occur at the maternal-fetal interface, demonstrating the dynamic architecture of the developing porcine placenta during early gestation. This work establishes fundamental time points in placenta development corresponding to fetal growth and microfold formation that may influence fetal growth and impact fetal survival.
    The ovary and placenta are dynamic structures requiring constant modification both structurally and through cell-cell communication capabilities. The extracellular matrix and basement membranes are primarily composed of a milieu of... more
    The ovary and placenta are dynamic structures requiring constant modification both structurally and through cell-cell communication capabilities. The extracellular matrix and basement membranes are primarily composed of a milieu of glycosaminoglycans, including heparan sulfate and hyaluronan. Heparanase (HPSE) and hyaluronidases (HYAL) are responsible for degrading heparan sulfate and hyaluronan, respectively. Therefore, the objective of this study was to evaluate the relationship of SNPs distinct to HPSE, HYAL1, and HYAL2 with measurements of reproduction and production traits in swine. Single trait associations were performed on a Landrace-Duroc-Yorkshire population using SNPs discovered and identified in HPSE, HYAL1, and HYAL2. Analyses were conducted on an extended pedigree and SNPs were found to be associated with reproductive and production traits. Prior to multiple-testing corrections, SNPs within HPSE were weakly associated (P < 0.03) having additive effects with age at puberty (-2.5 ± 1.08 days), ovulation rate (0.5 ± 0.24 corpora lutea), and number of piglets born alive (0.9 ± 0.44 piglets). A HYAL1 and two HYAL2 SNP were nominally associated (P ≤ 0.0063) with number of piglets born alive after multiple-testing corrections (effects between 1.02 and 1.44 piglets), while one of the same HYAL2 markers maintained a modest association (P = 0.0043) having a dominant effect with number of piglets weaned (1.2 ± 0.41 piglets) after multiple-testing correction. Functionally, HPSE and HYAL1 and 2 have been shown to participate in events related to ovarian and placental activity. SNPs from these studies could potentially assist with understanding genetic components underlying sow lifetime productivity as measured by piglet survivability based on number born alive and number weaned, thereby contributing to a greater number of pigs/sow/year.
    A previous study in cattle based on >48,000 markers identified markers on chromosome 4 near the chemerin gene associated with average daily feed intake (ADFI) in steers (P < 0.008). Chemerin is an adipokine associated with obesity... more
    A previous study in cattle based on >48,000 markers identified markers on chromosome 4 near the chemerin gene associated with average daily feed intake (ADFI) in steers (P < 0.008). Chemerin is an adipokine associated with obesity and metabolic syndrome in humans, representing a strong candidate gene potentially underlying the observed association. To evaluate whether the bovine chemerin gene is involved in feed intake, 16 markers within and around the gene were tested for association in the same resource population. Eleven were nominally significant for ADFI (P < 0.05) and two were significant after Bonferroni correction. Two and five SNP in this region were nominally significant for the related traits of average daily gain (ADG) and residual feed intake (RFI), respectively. All markers were evaluated for effects on meat quality and carcass phenotypes. Many of the markers associated with ADFI were associated with hot carcass weight (HCW), adjusted fat thickness (AFT), and ...
    Bovine (bov) interferon-stimulated gene product 15 (ISG15) is produced in the endometrium in response to conceptus-secreted interferon (IFN)-tau. ISG15 conjugates to endometrial proteins through an enzymatic pathway that is similar to... more
    Bovine (bov) interferon-stimulated gene product 15 (ISG15) is produced in the endometrium in response to conceptus-secreted interferon (IFN)-tau. ISG15 conjugates to endometrial proteins through an enzymatic pathway that is similar to ubiquitinylation. Ubiquitin-activating enzyme 1-like protein (UBE1L) initiates enzymatic conjugation by forming a thioester bond with ISG15, thus preparing it for transfer to the next series of enzymes. The bovUBE1L has not been described. We hypothesized that bovUBE1L was induced by pregnancy and IFN-tau in the endometrium. A 110-kDa protein was purified from bovine endometrial (BEND) cells based on affinity with recombinant (r) glutathione S-transferase (GST)-ISG15. This protein was digested in gel with trypsin. Seven peptides were purified using HPLC, sequenced using liquid chromatography-mass spectroscopy-mass spectroscopy and found to share 43-100% identity with human UBE1L. The full-length bovUBE1L cDNA was isolated from a BEND cell cDNA library, sequenced, and found to share 83% identity with human UBE1L cDNA. Northern blot revealed two mRNAs that were detected in greater (P<0.05) concentrations in endometrium from Day 17-21 pregnant versus nonpregnant cows. Western blots using antihuman UBE1L antibody revealed a similar pattern of pregnancy-associated expression of UBE1L protein in the uterus. The bovUBE1L mRNA was localized, using in situ hybridization, primarily to glandular and luminal epithelium, with more diffuse localization to stroma of the endometrium from pregnant cows. Because bovUBE1L was purified through its interaction with rGST-ISG15 and shares significant amino acid and cDNA sequence identity with human UBE1L, it is concluded that it mediates conjugation of ISG15 to uterine proteins in response to the developing and attaching conceptus.
    Interferon-stimulated gene (ISG) 15 mediates antiviral responses and also is upregulated within the endometrium in response to the developing embryo during early pregnancy. Structurally, ISG15 resembles two ubiquitin domains (30%... more
    Interferon-stimulated gene (ISG) 15 mediates antiviral responses and also is upregulated within the endometrium in response to the developing embryo during early pregnancy. Structurally, ISG15 resembles two ubiquitin domains (30% identical) that are separated by a hinge region. Recombinant (r) bovISG15 is not stable in solution. It was hypothesized that the hinge region contributed to the instability of rbovISG15. Within 24 h of dialysis, rbovISG15 formed complexes as detected by reducing and denaturing SDS-PAGE. However, chemical perturbations of cysteine prevented formation of rbovISG15 complexes over time. Furthermore, a site-directed mutant of rbovISG15 (Cys80Ser) was isomeric and more stable than rbovISG15. Neither wild-type nor mutant rbovISG15 was able to interact with the ISG15 E1 initiating enzyme, UBE1L, in an in vitro pull-down assay. Ovine (ov) ISG15 has three additional amino acids within the hinge region that were hypothesized to increase stability and the degree of interaction with UBE1L because of increased separation of the ubiquitin-like domains. Over time in solution, rovISG15 the level of rovISG15 secondary structure was diminished, whereas the Cys80Ser rovISG15 structure did not change. A GST-Cys80Ser rovISG15 fusion protein had increased structural stability and enhanced protein-protein interaction with UBE1L after dialysis for 48 h, when compared to the GST-rovISG15 fusion protein or rbovISG15. Models of bovISG15, Cys80Ser bovISG15, and ovISG15 were constructed, which confirmed that the hinge region between the two ubiquitin domains destabilizes rbovISG15 in solution.