Skip to main content

    Jan Keltjens

    ... Microbiol., 156 (1991) 491496. 13 JNS Evans, CJ Tolman, S. Kanodia and MF Roberts, Biochemistry, 24 (1985) 5693-5698. 14 A. Lehmacher, A.-B. Vogt and R. Hensel, FEBS Lett., 272 (1990) 94-98. 71 15 P. Sch nheit, J. Moll and RK Thauer,... more
    ... Microbiol., 156 (1991) 491496. 13 JNS Evans, CJ Tolman, S. Kanodia and MF Roberts, Biochemistry, 24 (1985) 5693-5698. 14 A. Lehmacher, A.-B. Vogt and R. Hensel, FEBS Lett., 272 (1990) 94-98. 71 15 P. Sch nheit, J. Moll and RK Thauer, Arch. ...
    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite as the terminal electron acceptor to form dinitrogen gas in the absence of oxygen. Anammox bacteria have a compartmentalized cell plan with a central... more
    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite as the terminal electron acceptor to form dinitrogen gas in the absence of oxygen. Anammox bacteria have a compartmentalized cell plan with a central membrane-bounded "prokaryotic organelle" called the anammoxosome. The anammoxosome occupies most of the cell volume, has a curved membrane and contains conspicuous tubule-like structures of unknown identity and function. It was previously suggested that the catalytic reactions of the anammox pathway occur in the anammoxosome and that proton-motive-force was established across its membrane. Here, we used antibodies raised against five key enzymes of the anammox catabolism to determine their cellular location. The antibodies were raised against purified native hydroxylamine oxidoreductase-like protein kustc0458 with its redox partner kustc0457, hydrazine dehydrogenase (HDH, kustc0694), hydroxylamine oxidase (HOX, kustc1061), nitrite oxidoreductase (NXR, kustd1700/03/04) and hydrazine synthase (HZS, kuste2859-61) of the anammox bacterium Kuenenia stuttgartiensis. We determined that all five protein complexes were exclusively located inside the anammoxosome matrix. Four of the protein complexes did not appear to form higher order protein organizations. However, the present data indicated for the first time that NXR might be part of the tubule-like structures, which may stretch the whole length of the anammoxosome. These findings support the anammoxosome as the locus of catabolic reactions of the anammox pathway. Importance Anaerobic ammonium-oxidizing (anammox) bacteria are environmentally relevant microorganisms that contribute significantly to the release of fixed nitrogen in nature. Furthermore, anammox process is applied for nitrogen removal from wastewater as an environment-friendly and cost effective technology. These microorganisms feature a unique cellular organelle, the anammoxosome, which was proposed to contain the energy metabolism of the cell and tubule-like structures with hitherto unknown function. Here, we purified five native enzymes catalyzing key reactions in the anammox metabolism and raised antibodies against these in order to localize them within the cell. We showed that all enzymes were located within the anammoxosome and nitrite oxidoreductase was exclusively located at the tubule-like structures providing the first insights to the function of these subcellular structures.
    The 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanosarcina barkeri was purified 313-fold to a specific activity of 470 mumol min-1 mg-1 at 37 degrees C and pH 7.8. At this stage, the enzyme was pure as judged from... more
    The 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanosarcina barkeri was purified 313-fold to a specific activity of 470 mumol min-1 mg-1 at 37 degrees C and pH 7.8. At this stage, the enzyme was pure as judged from polyacrylamide gel electrophoresis. The monofunctional enzyme was oxygen stable, but the presence of a detergent proved to be essential for its stability. Like the cyclohydrolase purified from Methanobacterium thermoautotrophicum (A. A. Dimarco, M. I. Donnelly, and R. S. Wolfe, J. Bacteriol. 168:1372-1377, 1986), the protein showed an apparent Mr of 82,000, and it is composed of two identical subunits as was concluded from nondenaturating and denaturating polyacrylamide gel electrophoresis. The enzymes from M. thermoautotrophicum and M. barkeri markedly differ with respect to the hydrolysis product of 5,10-methenyltetrahydromethanopterin: 5-formyl- and 10-formyltetrahydromethanopterin, respectively. The apparent Km for 5,10-methenyltetrahydromethanopterin ...
    Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its... more
    Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency....
    The genomes of two phenotypically denitrifying type strains of the genus Bacillus were sequenced and the pathways for dissimilatory nitrate reduction were reconstructed. Results suggest that denitrification proceeds in the periplasmic... more
    The genomes of two phenotypically denitrifying type strains of the genus Bacillus were sequenced and the pathways for dissimilatory nitrate reduction were reconstructed. Results suggest that denitrification proceeds in the periplasmic space and in an analogous fashion as in Gram-negative organisms, yet with the participation of proteins that tend to be membrane-bound or membrane-associated. A considerable degree of functional redundancy was observed with marked differences between B. azotoformans LMG 9581(T) and B. bataviensis LMG 21833(T). In addition to the already characterized menaquinol/cyt c-dependent nitric oxide reductase (Suharti et al., 2001, 2004) of which the encoding genes could be identified now, evidence for another novel nitric oxide reductase (NOR) was found. Also, our analyses confirm earlier findings on branched electron transfer with both menaquinol and cytochrome c as reductants. Quite unexpectedly, both bacilli have the disposal of two parallel pathways for nit...
    The synthesis of formyl-methanofuran and the reduction of the heterodisulfide (CoM-S-S-CoB) of coenzyme M (HS-CoM) and coenzyme B (HS-CoB) are two crucial, H2-dependent reactions in the energy metabolism of methanogenic archaea. The... more
    The synthesis of formyl-methanofuran and the reduction of the heterodisulfide (CoM-S-S-CoB) of coenzyme M (HS-CoM) and coenzyme B (HS-CoB) are two crucial, H2-dependent reactions in the energy metabolism of methanogenic archaea. The bioenergetics of the reactions in vivo were studied in chemostat cultures and in cell suspensions of Methanothermobacter thermautotrophicus metabolizing at defined dissolved hydrogen partial pressures ( pH2). Formyl-methanofuran synthesis is an endergonic reaction (DeltaG degrees ' = +16 kJ.mol-1). By analyzing the concentration ratios between formyl-methanofuran and methanofuran in the cells, free energy changes under experimental conditions (DeltaG') were found to range between +10 and +35 kJ.mol-1 depending on the pH2 applied. The comparison with the sodium motive force indicated that the reaction should be driven by the import of a variable number of two to four sodium ions. Heterodisulfide reduction (DeltaG degrees ' = -40 kJ.mol-1) was ...
    The cellulosomes of anaerobic fungi convert crystalline cellulose solely into glucose, in contrast with bacterial cellulosomes which produce cellobiose. Previously, a beta-glucosidase was identified in the cellulosome of Piromyces sp.... more
    The cellulosomes of anaerobic fungi convert crystalline cellulose solely into glucose, in contrast with bacterial cellulosomes which produce cellobiose. Previously, a beta-glucosidase was identified in the cellulosome of Piromyces sp. strain E2 by zymogram analysis, which represented approx. 25% of the extracellular beta-glucosidase activity. To identify the component in the fungal cellulosome responsible for the beta-glucosidase activity, immunoscreening with anti-cellulosome antibodies was used to isolate the corresponding gene. A 2737 bp immunoclone was isolated from a cDNA library. The clone encoded an extracellular protein containing a eukaryotic family 3 glycoside hydrolase domain homologue and was therefore named cel3A. The C-terminal end of the encoded Cel3A protein consisted of an auxiliary domain and three fungal dockerins, typical for cellulosome components. The Cel3A catalytic domain was expressed in Escherichia coli BL21 and purified. Biochemical analyses of the recombi...
    Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration,... more
    Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration, oxygen was specifically utilized to activate the inert substrates. The presumed obligatory need for oxygen may have resisted the search for microorganisms that are capable of the anaerobic oxidation of ammonium and of methane. However extremely slowly growing, these "impossible" organisms exist and they found other means to tackle ammonium and methane. Anaerobic ammonium-oxidizing (anammox) bacteria use the oxidative power of nitric oxide (NO) by forging this molecule to ammonium, thereby making hydrazine (N2H4). Nitrite-dependent anaerobic methane oxidizers (N-DAMO) again take advantage of NO, but now apparently disproportionating the compound into dinitrogen and dioxygen gas. This intracellularly produced dioxygen enables N-DAMO bacteria to adopt an aerobic mechanism for methane oxidation.Although our understanding is only emerging how hydrazine synthase and the NO dismutase act, it seems clear that reactions fully rely on metal-based catalyses known from other enzymes. Metal-dependent conversions not only hold for these key enzymes, but for most other reactions in the central catabolic pathways, again supported by well-studied enzymes from model organisms, but adapted to own specific needs. Remarkably, those accessory catabolic enzymes are not unique for anammox bacteria and N-DAMO. Close homologs are found in protein databases where those homologs derive from (partly) known, but in most cases unknown species that together comprise an only poorly comprehended microbial world.
    Depending on the reduction-oxidation state of the cell, some methanogenic bacteria synthesize or hydrolyze 8-hydroxyadenylylated coenzyme F420 (coenzyme F390). These two reactions are catalyzed by coenzyme F390 synthetase and hydrolase,... more
    Depending on the reduction-oxidation state of the cell, some methanogenic bacteria synthesize or hydrolyze 8-hydroxyadenylylated coenzyme F420 (coenzyme F390). These two reactions are catalyzed by coenzyme F390 synthetase and hydrolase, respectively. To gain more insight into the mechanism of the former reaction, coenzyme F390 synthetase from Methanobacterium thermoautotrophicum Marburg was purified 89-fold from cell extract to a specific activity of 0.75 mumol.min-1.mg of protein-1. The monomeric enzyme consisted of a polypeptide with an apparent molecular mass of 41 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. ftsA, the gene encoding coenzyme F390 synthetase, was cloned and sequenced. It encoded a protein of 377 amino acids with a predicted M(r) of 43,280. FtsA was found to be similar to domains found in the superfamily of peptide synthetases and adenylate-forming enzymes. FtsA was most similar to gramicidin S synthetase II (67% similarity in a 227-amino-acid region) and sigma-(L-alpha-aminoadipyl)-L-cysteine-D-valine synthetase (57% similarity in a 193-amino-acid region). Coenzyme F390 synthetase, however, holds an exceptional position in the superfamily of adenylate-forming enzymes in that it does not activate a carboxyl group of an amino or hydroxy acid but an aromatic hydroxyl group of coenzyme F420.
    Research Interests:
    Research Interests:
    Research Interests:
    Cofactor extracts of Methanogenium tationis were screened for the presence of pterin-derivatives. Methanopterin, sarcinapterin and 7-methylpterin were absent, while 2-amino-4-hydroxy-pteridine and another blue fluorescent compound with a... more
    Cofactor extracts of Methanogenium tationis were screened for the presence of pterin-derivatives. Methanopterin, sarcinapterin and 7-methylpterin were absent, while 2-amino-4-hydroxy-pteridine and another blue fluorescent compound with a pterin spectrum were detected. The latter pterin was purified by ion exchange and reversed-phase column chromatography. The structure of this compound was elucidated by combining spectrophotometry, amino acid analysis and 1H-NMR spectroscopy. The pterin, which we named tatiopterin, was identified as an aspartyl derivative of sarcinapterin with a 7-proton instead of a 7-methyl group in the pterin moiety. The IUPAC name is: N-[-1'-(2''-amino-4''-hydroxy-7''-proton-6''-pteridinyl)ethyl]-4- [2',3',4',5'-tetrahydroxypent-1'-yl(5'----1'')O-alpha- ribofuranosyl-5''-phosphoric acid]aniline, in which the phosphate group is esterified with alpha-hydroxyglutarylglutamylaspartic acid.
    Research Interests:
    Research Interests:
    Anaerobic ammonium-oxidizing (anammox) bacteria are the last major addition to the nitrogen-cycle (N-cycle). Because of the presumed inert nature of ammonium under anoxic conditions, the organisms were deemed to be nonexistent until about... more
    Anaerobic ammonium-oxidizing (anammox) bacteria are the last major addition to the nitrogen-cycle (N-cycle). Because of the presumed inert nature of ammonium under anoxic conditions, the organisms were deemed to be nonexistent until about 15 years ago. They, however, appear to be present in virtually any anoxic place where fixed nitrogen (ammonium, nitrate, nitrite) is found. In various mar`ine ecosystems, anammox bacteria are a major or even the only sink for fixed nitrogen. According to current estimates, about 50% of all nitrogen gas released into the atmosphere is made by these bacteria. Besides this, the microorganisms may be very well suited to be applied as an efficient, cost-effective, and environmental-friendly alternative to conventional wastewater treatment for the removal of nitrogen. So far, nine different anammox species divided over five genera have been enriched, but none of these are in pure culture. This number is only a modest reflection of a continuum of species that is suggested by 16S rRNA analyses of environmental samples. In their environments, anammox bacteria thrive not just by competition, but rather by delicate metabolic interactions with other N-cycle organisms. Anammox bacteria owe their position in the N-cycle to their unique property to oxidize ammonium in the absence of oxygen. Recent research established that they do so by activating the compound into hydrazine (N(2)H(4)), using the oxidizing power of nitric oxide (NO). NO is produced by the reduction of nitrite, the terminal electron acceptor of the process. The forging of the N-N bond in hydrazine is catalyzed by hydrazine synthase, a fairly slow enzyme and its low activity possibly explaining the slow growth rates and long doubling times of the organisms. The oxidation of hydrazine results in the formation of the end product (N(2)), and electrons that are invested both in electron-transport phosphorylation and in the regeneration of the catabolic intermediates (N(2)H(4), NO). Next to this, the electrons provide the reducing power for CO(2) fixation. The electron-transport phosphorylation machinery represents another unique characteristic, as it is most likely localized on a special cell organelle, the anammoxosome, which is surrounded by a glycerolipid bilayer of ladder-like ("ladderane") cyclobutane and cyclohexane ring structures. The use of ammonium and nitrite as sole substrates might suggest a simple metabolic system, but the contrary seems to be the case. Genome analysis and ongoing biochemical research reveal an only partly understood redundancy in respiratory systems, featuring an unprecedented collection of cytochrome c proteins. The presence of the respiratory systems lends anammox bacteria a metabolic versatility that we are just beginning to appreciate. A specialized use of substrates may provide different anammox species their ecological niche.
    During short-term labeling experiments, cells of Methanobacterium thermoautotrophicum incorporated a substantial part of 14CO2 in a compound with a bright yellow fluorescence on dry thin-layer chromatography plates and called yellow... more
    During short-term labeling experiments, cells of Methanobacterium thermoautotrophicum incorporated a substantial part of 14CO2 in a compound with a bright yellow fluorescence on dry thin-layer chromatography plates and called yellow fluorescent compound (YFC) [Daniels, L. and Zeikus, J.G. (1978) J. Bacteriol. 136, 75-84]. This compound was extracted and purified by ion-exchange column chromatography with formic acid gradients up to 0.3 M. Out of 325 g wet cells of M. thermoautotrophicum about 4 mg of the compound were isolated. This material and some degradation products obtained from it were studied by means of chemical decomposition, ultraviolet-visible-light spectroscopy and preliminary 1H-NMR spectroscopy. It has structural elements in common with methanopterin (see preceding paper in this journal); these elements are a pterin group, glutamate, a hexosamine. The pterin in this compound is present in a reduced form, presumably as 5,6,7,8-tetrahydromethanopterin, and the additional one-carbon unit is probably present as a carboxy group. Probably the first step of methanogenesis implies a carboxylation of methanopterin and a concomitant reduction of the pterin. The trivial name carboxy-5,6,7,8-tetrahydromethanopterin is introduced for the compound.
    ... Microbiol., 156 (1991) 491496. 13 JNS Evans, CJ Tolman, S. Kanodia and MF Roberts, Biochemistry, 24 (1985) 5693-5698. 14 A. Lehmacher, A.-B. Vogt and R. Hensel, FEBS Lett., 272 (1990) 94-98. 71 15 P. Sch nheit, J. Moll and RK Thauer,... more
    ... Microbiol., 156 (1991) 491496. 13 JNS Evans, CJ Tolman, S. Kanodia and MF Roberts, Biochemistry, 24 (1985) 5693-5698. 14 A. Lehmacher, A.-B. Vogt and R. Hensel, FEBS Lett., 272 (1990) 94-98. 71 15 P. Sch nheit, J. Moll and RK Thauer, Arch. ...
    Nitric oxide is an important molecule in all domains of life with significant biological functions in both pro- and eukaryotes. Anaerobic ammonium-oxidizing (anammox) bacteria that contribute substantially to the release of fixed nitrogen... more
    Nitric oxide is an important molecule in all domains of life with significant biological functions in both pro- and eukaryotes. Anaerobic ammonium-oxidizing (anammox) bacteria that contribute substantially to the release of fixed nitrogen into the atmosphere use the oxidizing power of NO to activate inert ammonium into hydrazine (N2H4). Here, we describe an enzyme from the anammox bacterium Kuenenia stuttgartiensis that uses a novel pathway to make NO from hydroxylamine. This new enzyme is related to octaheme hydroxylamine oxidoreductase, a key protein in aerobic ammonium-oxidizing bacteria. By a multiphasic approach including the determination of the crystal structure of the K. stuttgartiensis enzyme at 1.8 Å resolution and refinement and reassessment of the hydroxylamine oxidoreductase structure from Nitrosomonas europaea, both in the presence and absence of their substrates, we propose a model for NO formation by the K. stuttgartiensis enzyme. Our results expand the understanding of the functions that the widespread family of octaheme proteins have.
    A small irregular coccoid methanogenic bacterium (PAT) was isolated from the hindgut of the cockroach Periplaneta americana. Fluorescence microscopy and transmission electron microscopy of the hindgut of P. americana suggest that the... more
    A small irregular coccoid methanogenic bacterium (PAT) was isolated from the hindgut of the cockroach Periplaneta americana. Fluorescence microscopy and transmission electron microscopy of the hindgut of P. americana suggest that the organism occurs abundantly in the microbiota attached to the hindgut wall. The strain produces methane by the reduction of methanol and methylated amines with molecular hydrogen. Acetate, coenzyme M, yeast extract, tryptic soy broth and vitamins are required for growth. The cells lack a rigid cell wall and lyse immediately in buffers of low ionic strength. Maximum rate of growth (specific growth rate, 0.22 h(-1)) occurs in a rich medium at 39 degrees C, at a pH range of 7.2-7.7 and at a salt concentration below 100 mM NaCl. Sequence analysis of the small-subunit rDNA indicates that strain PAT is related to the family Methanosarcinaceae but does not belong to any previously described genus. Therefore, it is proposed that strain PAT be classified in a new genus, related to the Methanosarcinaceae, as Methanomicrococcus blatticola (type strain PAT = DSM 13328T).
    Anaerobic ammonium-oxidizing (anammox) bacteria primarily grow by the oxidation of ammonium coupled to nitrite reduction, using CO2 as the sole carbon source. Although they were neglected for a long time, anammox bacteria are encountered... more
    Anaerobic ammonium-oxidizing (anammox) bacteria primarily grow by the oxidation of ammonium coupled to nitrite reduction, using CO2 as the sole carbon source. Although they were neglected for a long time, anammox bacteria are encountered in an enormous species (micro)diversity in virtually any anoxic environment that contains fixed nitrogen. It has even been estimated that about 50% of all nitrogen gas released into the atmosphere is made by these 'impossible' bacteria. Anammox catabolism most likely resides in a special cell organelle, the anammoxosome, which is surrounded by highly unusual ladder-like (ladderane) lipids. Ammonium oxidation and nitrite reduction proceed in a cyclic electron flow through two intermediates, hydrazine and nitric oxide, resulting in the generation of proton-motive force for ATP synthesis. Reduction reactions associated with CO2 fixation drain electrons from this cycle, and they are replenished by the oxidation of nitrite to nitrate. Besides ammonium or nitrite, anammox bacteria use a broad range of organic and inorganic compounds as electron donors. An analysis of the metabolic opportunities even suggests alternative chemolithotrophic lifestyles that are independent of these compounds. We note that current concepts are still largely hypothetical and put forward the most intriguing questions that need experimental answers.
    Anaerobic ammonium-oxidizing (anammox) bacteria are one of the latest additions to the biogeochemical nitrogen cycle. These bacteria derive their energy for growth from the conversion of ammonium and nitrite into dinitrogen gas in the... more
    Anaerobic ammonium-oxidizing (anammox) bacteria are one of the latest additions to the biogeochemical nitrogen cycle. These bacteria derive their energy for growth from the conversion of ammonium and nitrite into dinitrogen gas in the complete absence of oxygen. These slowly growing microorganisms belong to the order Brocadiales and are affiliated to the Planctomycetes. Anammox bacteria are characterized by a compartmentalized cell architecture featuring a central cell compartment, the "anammoxosome". Thus far unique "ladderane" lipid molecules have been identified as part of their membrane systems surrounding the different cellular compartments. Nitrogen formation seems to involve the intermediary formation of hydrazine, a very reactive and toxic compound. The genome of the anammox bacterium Kuenenia stuttgartiensis was assembled from a complex microbial community grown in a sequencing batch reactor (74% enriched in this bacterium) using a metagenomics approach. The assembled genome allowed the in silico reconstruction of the anammox metabolism and identification of genes most likely involved in the process. The present anammox pathway is the only one consistent with the available experimental data, thermodynamically and biochemically feasible, and consistent with Ockham's razor: it invokes minimum biochemical novelty and requires the fewest number of biochemical reactions. The worldwide presence of anammox bacteria has now been established in many oxygen-limited marine and freshwater systems, including oceans, seas, estuaries, marshes, rivers and large lakes. In the marine environment over 50% of the N(2) gas released may be produced by anammox bacteria. Application of the anammox process offers an attractive alternative to current wastewater treatment systems for the removal of ammonia-nitrogen. Currently, at least five full scale reactor systems are operational.
    Biological methane oxidation proceeds either through aerobic or anaerobic pathways. The newly discovered bacterium Candidatus... more
    Biological methane oxidation proceeds either through aerobic or anaerobic pathways. The newly discovered bacterium Candidatus 'Methylomirabilis oxyfera' challenges this dichotomy. This bacterium performs anaerobic methane oxidation coupled to denitrification, but does so in a peculiar way. Instead of scavenging oxygen from the environment, like the aerobic methanotrophs, or driving methane oxidation by reverse methanogenesis, like the methanogenic archaea in sulfate-reducing systems, it produces its own supply of oxygen by metabolizing nitrite via nitric oxide into oxygen and dinitrogen gas. The intracellularly produced oxygen is then used for the oxidation of methane by the classical aerobic methane oxidation pathway involving methane mono-oxygenase. The present mini-review summarizes the current knowledge about this process and the micro-organism responsible for it.
    It has been less than two decades since anammox (anaerobic ammonium oxidation) coupled to nitrite reduction has been discovered. Already, this process has been recognized as an important sink for fixed nitrogen in the natural environment... more
    It has been less than two decades since anammox (anaerobic ammonium oxidation) coupled to nitrite reduction has been discovered. Already, this process has been recognized as an important sink for fixed nitrogen in the natural environment and has been implemented as a cost-effective ammonium removal technology. Still, little is known about the molecular mechanism of this remarkable reaction. In this mini review, we present an insight into how ammonium and nitrite are combined to form dinitrogen gas.
    5,10-Methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase have been purified to homogeneity by a factor of 86 and 68, respectively, from methanol-grown Methanosarcina barkeri cells. The... more
    5,10-Methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase have been purified to homogeneity by a factor of 86 and 68, respectively, from methanol-grown Methanosarcina barkeri cells. The dehydrogenase was isolated as a hexamer of a single 35 kDa subunit, whereas the reductase was composed of four identical 38 kDa subunits. The purified oxygen-stable enzymes catalyzed the oxidation of 5,10-methylenetetrahydromethanopterin and methyltetrahydromethanopterin with Vmax values of 3000 and 200 mumol min-1 mg-1, respectively. The methanogenic electron carrier coenzyme F420 was a specific electron acceptor for both enzymes. Steady state kinetics for the two enzymes were in agreement with ternary complex (sequential) mechanisms. Methylene reductase and methylene dehydrogenase are proposed to function in the methanol oxidation step to CO2.
    Inorganic pyrophosphatase (EC 3.6.1.1.) has been isolated from the archaebacterium Methanobacterium thermoautotrophicum (strain delta H). The enzyme was purified 850-fold in three steps to electrophoretic homogeneity. The soluble... more
    Inorganic pyrophosphatase (EC 3.6.1.1.) has been isolated from the archaebacterium Methanobacterium thermoautotrophicum (strain delta H). The enzyme was purified 850-fold in three steps to electrophoretic homogeneity. The soluble pyrophosphatase consists of four identical subunits: the molecular mass of the native enzyme estimated by gel filtration was approx. 100 kDa and denaturing polyacrylamide gel electrophoresis gave a single band of 25 kDa. The enzyme also may occur as an active dimer formed by dissociation of the tetramer. The pyrophosphate showed an optimal activity at 70 degrees C and a pH of 7.7 (at 60 degrees C) and was not influenced by dithiothreitol, sodium dithionite or potassium chloride. The enzyme was very specific for pyrophosphate (PPi) and Mg2+. Magnesium could be partially replaced by Co2+ (15%). The reaction was inhibited for 60% by 1 mM Mn2+ in the presence of 24 mM Mg2+. In addition, the enzyme was inhibited by potassium fluoride (50% at 0.9 mM). Kinetic analysis revealed positive co-operativity for both Mg2+ and PPi with Hill coefficients of 3.3 and 2.0, respectively. Under the experimental conditions at which the enzyme was present as its dimer, the apparent Km of PPi and magnesium were determined and were approx. 0.16 mM and 4.9 mM, respectively; Vmax was estimated at about 570 U/mg.