Skip to main content

    Hamid Garmestani

    Rapid and accurate prediction of residual stress in metal additive manufacturing processes is of great importance to guarantee the quality of the fabricated part to be used in a mission-critical application in the aerospace and automotive... more
    Rapid and accurate prediction of residual stress in metal additive manufacturing processes is of great importance to guarantee the quality of the fabricated part to be used in a mission-critical application in the aerospace and automotive industries. Experimentation and numerical modeling are valuable tools for measuring and predicting the residual stress; however, to-date conducting experimentation and numerical modeling is expensive and time-consuming. Thus, herein, a physics-based thermomechanical analytical model is proposed to predict the residual stress of the additively manufactured part rapidly and accurately. A moving point heat source approach is used to predict the temperature field by considering the effects of scan strategies, heat loss, and energy needed for solid-state phase transformation. Due to the high temperature gradient in this process, part experiences a high amount of thermal stress following solidification which may exceed the yield strength of the material....
    In this study, the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle X-ray diffraction (WAXD)... more
    In this study, the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle X-ray diffraction (WAXD) and pole figure analysis. The mechanical properties (modulus, hardness, and strain rate sensitivity parameter) of the epoxy system annealed in the magnetic field were probed with the aid of instrumented nanoindentation, and the results are compared to the reference epoxy sample. To further examine the creep response of the magnetically annealed and reference samples, short 45 min duration creep tests were carried out. An equivalent to the macroscale creep compliance was calculated using the aforementioned nanocreep data. Using the continuous contact compliance (CCC) analysis, the phase lag angle, tan (δ), between the displacement and applied force in an oscillatory nanoindentation test was measured for both neat and magnetically annealed systems thro...
    Microstructure sensitive design was used in this study to design a textured soft magnet material to meet a range of magnetic properties. The evolution of microstructure and magnetic properties during mechanical processing was simulated... more
    Microstructure sensitive design was used in this study to design a textured soft magnet material to meet a range of magnetic properties. The evolution of microstructure and magnetic properties during mechanical processing was simulated and presented in a spectral representation for microstructure (texture hull) and magnetic property (property hull). The set of properties for a single path (or multiple processing paths) is represented in the property hull with a direct link to the range of desired microstructures. A methodology is proposed to achieve microstructures satisfying the requirement of multiple properties.
    To evaluate the effective thermal conductivity of a general anisotropic multiphase microstructure, a modified version of statistical strong-contrast expansions is formulated here. The proposed method takes into account the shape,... more
    To evaluate the effective thermal conductivity of a general anisotropic multiphase microstructure, a modified version of statistical strong-contrast expansions is formulated here. The proposed method takes into account the shape, orientation, and distribution of each phase through two-point and three-point correlation functions. By applying a recently developed method, three-point correlation functions are approximated from the two-point correlation functions. Numerically, it is shown that for high contrast constituents, the solution of the third-order strong-contrast expansions is very sensitive to the selection of the reference medium. A technique is proposed to minimize the sensitivity of the solution. To establish the validity of the methods developed, the effective thermal conductivity of a number of isotropic and anisotropic two-phase and three-phase microstructures is evaluated and compared to their corresponding finite element (FE) simulations. Good agreement between the FE ...