Skip to main content
Margherita D'Antuono

    Margherita D'Antuono

    Supplemental material, sj-docx-1-taw-10.1177_20420986211038436 for Monitoring the manufacturing and quality of medicines: a fundamental task of pharmacovigilance by Marco Sardella, Glyn Belcher, Calin Lungu, Terenzio Ignoni, Manuela... more
    Supplemental material, sj-docx-1-taw-10.1177_20420986211038436 for Monitoring the manufacturing and quality of medicines: a fundamental task of pharmacovigilance by Marco Sardella, Glyn Belcher, Calin Lungu, Terenzio Ignoni, Manuela Camisa, Doris Irene Stenver, Paolo Porcelli, Margherita D'Antuono, Nicola Gian Castiglione, Anna Adams, Giovanni Furlan, Ilaria Grisoni, Sarah Hall, Laura Boga, Valentina Mancini, Mircea Ciuca, David Chonzi, Brian Edwards, Arduino A Mangoni, Marco Tuccori, Elena Prokofyeva, Fabio De Gregorio, Mario Bertazzoli Grabinski Broglio, Bert van Leeuwen, Paola Kruger, Christian Rausch and Hervé Le Louet in Therapeutic Advances in Drug Safety
    Generation of rhythmic activity by neuronal networks may represent the epiphenomenon of pathological conditions that underlie several neurological disorders such as cingulate epilepsy, a type of partial epilepsy affecting the anterior... more
    Generation of rhythmic activity by neuronal networks may represent the epiphenomenon of pathological conditions that underlie several neurological disorders such as cingulate epilepsy, a type of partial epilepsy affecting the anterior cingulate cortex (ACC), and accompanied by progressive cognitive impairment and psychiatric disturbances. We recently discovered that GABA-mediated neurotransmission plays a pivotal role in the generation and maintenance of epileptiform
    CA1 pyramids were studied intracellularly in rat hippocampal slices to establish the contribution of excitatory amino acid (EAA) and GABA(A) receptors to the depolarizations induced by brief (< 10 min) anoxic episodes. An increase... more
    CA1 pyramids were studied intracellularly in rat hippocampal slices to establish the contribution of excitatory amino acid (EAA) and GABA(A) receptors to the depolarizations induced by brief (< 10 min) anoxic episodes. An increase of the amplitude of the depolarizations evoked by successive anoxic episodes occurred with KCl (n=4 cells), not with K-acetate-filled (n=3) recording electrodes. Moreover, with K-acetate-filled electrodes the anoxic depolarization amplitude was reduced, but not abolished by EAA receptor antagonists (n=14). The residual anoxic depolarizations were blocked by a GABA(A) receptor antagonist (n=5) and decreased by the carbonic anhydrase inhibitor acetazolamide (n=4). We conclude that the anoxic depolarizations generated by CA1 pyramids are caused by the activation of EAA along with GABA(A) receptors leading to an increased membrane conductance to both Cl- and HCO3-.
    The collection and assessment of individual case safety reports (ICSRs) is important to detect unknown adverse drug reactions particularly in the first decade after approval of new chemical entities. However, regulations require that... more
    The collection and assessment of individual case safety reports (ICSRs) is important to detect unknown adverse drug reactions particularly in the first decade after approval of new chemical entities. However, regulations require that these activities are routinely undertaken for all medicinal products, including older medicines such as generic medicinal products with a well-established safety profile. For the latter, the risk management plans no longer contain important risks, considered important safety concerns, on the basis that routine pharmacovigilance activity would not allow their further characterisation. Society assumes that unexpected adverse reactions causally related to pharmacological activity are very unlikely to be detected for such well-established medicines, but important risks can still occur. For these products, a change in the safety profile which is brand or source specific and usually local in nature, associated with failures with the adequate control of qualit...
    We obtained field, K(+) selective and "sharp" intracellular recordings from the rat entorhinal (EC) and perirhinal (PC) cortices in an in vitro brain slice preparation to identify the events occurring at interictal-to-ictal... more
    We obtained field, K(+) selective and "sharp" intracellular recordings from the rat entorhinal (EC) and perirhinal (PC) cortices in an in vitro brain slice preparation to identify the events occurring at interictal-to-ictal transition during 4-aminopyridine application. Field recordings revealed interictal- (duration: 1.1 to 2.2s) and ictal-like (duration: 31 to 103s) activity occurring synchronously in EC and PC; in addition, interictal spiking in PC increased in frequency shortly before the onset of ictal oscillatory activity thus resembling the hypersynchronous seizure onset seen in epileptic patients and in in vivo animal models. Intracellular recordings with K-acetate+QX314-filled pipettes in PC principal cells showed that spikes at ictal onset had post-burst hyperpolarizations (presumably mediated by postsynaptic GABAA receptors), which gradually decreased in amplitude. This trend was associated with a progressive positive shift of the post-burst hyperpolarization re...
    Low-frequency stimulation, delivered through transcranial magnetic or deep-brain electrical procedures, reduces seizures in patients with pharmacoresistant epilepsy. A similar control of ictallike discharges is exerted by low-frequency... more
    Low-frequency stimulation, delivered through transcranial magnetic or deep-brain electrical procedures, reduces seizures in patients with pharmacoresistant epilepsy. A similar control of ictallike discharges is exerted by low-frequency electrical stimulation in rodent brain slices maintained in vitro during convulsant treatment. By employing field and “sharp” intracellular recordings, we analyzed here the effects of stimuli delivered at 0.1 or 1 Hz in the lateral nucleus of the amygdala on ictallike epileptiform discharges induced by the K+ channel blocker 4-aminopyridine in the perirhinal cortex, in a rat brain slice preparation. We found that 1) ictal events were nominally abolished when the stimulus rate was brought from 0.1 to 1 Hz; 2) this effect was associated with an increased latency of the epileptiform responses recorded in perirhinal cortex following each stimulus; and 3) both changes recovered to control values following arrest of the 1-Hz stimulation protocol. The contro...
    In mouse brain slices that contain reciprocally connected hippocampus and entorhinal cortex (EC) networks, CA3 outputs control the EC propensity to generate experimentally induced ictal-like discharges resembling electrographic seizures.... more
    In mouse brain slices that contain reciprocally connected hippocampus and entorhinal cortex (EC) networks, CA3 outputs control the EC propensity to generate experimentally induced ictal-like discharges resembling electrographic seizures. Neuronal damage in limbic areas, such as CA3 and dentate hilus, occurs in patients with temporal lobe epilepsy and in animal models (e.g., pilocarpine- or kainate-treated rodents) mimicking this epileptic disorder. Hence, hippocampal damage in epileptic mice may lead to decreased CA3 output function that in turn would allow EC networks to generate ictal-like events. Here we tested this hypothesis and found that CA3-driven interictal discharges induced by 4-aminopyridine (4AP, 50 microM) in hippocampus-EC slices from mice injected with pilocarpine 13-22 days earlier have a lower frequency than in age-matched control slices. Moreover, EC-driven ictal-like discharges in pilocarpine-treated slices occur throughout the experiment (< or = 6 h) and spre...
    Low-frequency network oscillations occur in several areas of the limbic system where they contribute to synaptic plasticity and mnemonic functions that are in turn modulated by cholinergic mechanisms. Here we used slices of the rat... more
    Low-frequency network oscillations occur in several areas of the limbic system where they contribute to synaptic plasticity and mnemonic functions that are in turn modulated by cholinergic mechanisms. Here we used slices of the rat subiculum (a limbic area involved in cognitive functions) to establish how network and single neuron (intrinsic) membrane mechanisms participate to the rhythmic oscillations elicited by the cholinergic agent carbachol (CCh, 50-100 microM). We have found that CCh-induced network oscillations (intraoscillatory frequency = 5-16 Hz) are abolished by an antagonist of non-N-methyl-D-aspartate (NMDA) glutamatergic receptors (n = 6 slices) but persist during blockade of GABA receptors (n = 16). In addition, during application of glutamate and GABA receptor antagonists, single subicular cells generate burst oscillations at 2.1-6.8 Hz when depolarized with steady current injection. These intrinsic burst oscillations disappear during application of a Ca(2+) channel ...
    We obtained rat brain slices (550-650 microm) that contained part of the frontoparietal cortex along with a portion of the thalamic ventrobasal complex (VB) and of the reticular nucleus (RTN). Maintained reciprocal thalamocortical... more
    We obtained rat brain slices (550-650 microm) that contained part of the frontoparietal cortex along with a portion of the thalamic ventrobasal complex (VB) and of the reticular nucleus (RTN). Maintained reciprocal thalamocortical connectivity was demonstrated by VB stimulation, which elicited orthodromic and antidromic responses in the cortex, along with re-entry of thalamocortical firing originating in VB neurons excited by cortical output activity. In addition, orthodromic responses were recorded in VB and RTN following stimuli delivered in the cortex. Spontaneous and stimulus-induced coherent rhythmic oscillations (duration = 0.4-3.5 s; frequency = 9-16 Hz) occurred in cortex, VB, and RTN during application of medium containing low concentrations of the K(+) channel blocker 4-aminopyridine (0.5-1 microM). This activity, which resembled electroencephalograph (EEG) spindles recorded in vivo, disappeared in both cortex and thalamus during application of the excitatory amino acid re...
    Taylor's focal cortical dysplasia corresponds to a localized disruption of the normal cortical lamination with an excess of large, aberrant cells. Sustained epileptic discharges originate from the dysplastic neocortex and this tissue... more
    Taylor's focal cortical dysplasia corresponds to a localized disruption of the normal cortical lamination with an excess of large, aberrant cells. Sustained epileptic discharges originate from the dysplastic neocortex and this tissue retains sufficient connectivity for expressing seizure abnormalities. In this brief review, we summarize the findings obtained by analyzing surgically-resected human tissue with focal cortical dysplasia that was maintained in vitro in a brain slice preparation. These data have been compared with those obtained from human cortex with normal structural organization; such tissue was available from patients undergoing surgery for a variety of neurological disorders, most often for mesial temporal lobe epilepsy. These studies have shown that: (i). slices obtained from focal cortical dysplastic tissue have an intrinsic ability to generate ictal-like epileptiform events when challenged with the convulsant drug 4-aminopyridine; (ii). 4-aminopyridine-induced...
    GABAA receptor-mediated inhibition-which is due to Cl(-) and HCO3 (-) currents controlled by KCC2 and carbonic anhydrase activity, respectively-contributes to short- and long-lasting interictal events recorded from the CA3 region of... more
    GABAA receptor-mediated inhibition-which is due to Cl(-) and HCO3 (-) currents controlled by KCC2 and carbonic anhydrase activity, respectively-contributes to short- and long-lasting interictal events recorded from the CA3 region of hippocampus during application of 4-aminopyridine (4AP, 50 μM). Here, we employed field potential recordings in an in vitro brain slice preparation to establish the effects induced by the KCC2 blockers VU0240551 (10 μM) or bumetanide (50 μM) and by the carbonic anhydrase inhibitor acetazolamide (10 μM) on the two types of interictal events. We found that blocking KCC2 activity decreased the amplitude of the short-lasting events. In addition, this pharmacological procedure increased the interval of occurrence of the long-lasting events and reduced their amplitude. Blocking carbonic anhydrase activity with acetazolamide reduced the interval of occurrence and the duration of the short-lasting events while increasing their amplitude; acetazolamide also reduced the duration and amplitude of the long-lasting events. Finally, blocking either KCC2 or carbonic anhydrase activity increased the interval of occurrence of pharmacologically isolated synchronous GABAergic events and decreased their duration and amplitude. These data substantiate further the role of GABAA receptor-mediated signaling in driving neuronal populations toward hypersynchronous states presumably by increasing extracellular [K(+)].
    In this review, we summarize findings obtained in acute and chronic epilepsy models and in particular experiments that have revealed how neuronal networks in the limbic system-which is closely involved in the pathophysiogenesis of mesial... more
    In this review, we summarize findings obtained in acute and chronic epilepsy models and in particular experiments that have revealed how neuronal networks in the limbic system-which is closely involved in the pathophysiogenesis of mesial temporal lobe epilepsy (MTLE)-produce hypersynchronous discharges. MTLE is often associated with a typical pattern of brain damage known as mesial temporal sclerosis, and it is one of the most refractory forms of partial epilepsy in adults. Specifically, we will address the cellular and pharmacological features of abnormal electrographic events that, as in MTLE patients, can occur in in vivo and in vitro animal models; these include interictal and ictal discharges along with high-frequency oscillations. In addition, we will consider how different limbic structures made hyperexcitable by acute pharmacological manipulations interact during epileptiform discharge generation. We will also review the electrographic characteristics of two types of seizure onsets that are most commonly seen in human and experimental MTLE as well as in in vitro models of epileptiform synchronization. Finally, we will address the role played by neurosteroids in reducing epileptiform synchronization and in modulating epileptogenesis.
    Protein phosphorylation is the main signaling system known to trigger synaptic changes underlying long-term potentiation (LTP). The timing of these phosphorylations plays an essential role to maintain the potentiated state of synapses.... more
    Protein phosphorylation is the main signaling system known to trigger synaptic changes underlying long-term potentiation (LTP). The timing of these phosphorylations plays an essential role to maintain the potentiated state of synapses. However, in mice a simultaneous analysis of phosphorylated proteins during early-LTP (E-LTP) has not been thoroughly carried out. Here we described phosphorylation changes of alphaCaMKII, ERK1/2, PKB/Akt and CREB at different times after E-LTP induced at Schaffer collateral/commissural fiber-CA1 synapses by 1 s 100 Hz tetanic stimulation in mouse hippocampal slices. We found that phosphorylation levels of all the molecules examined rapidly increased after tetanisation and remained above the basal level up to 30 min. Notably, we observed a sustained increment in the phosphorylation level of Akt at Ser473, whereas the phosphorylation level of Akt at Thr308 was unchanged. Unexpectedly, we also detected a marked increase of CREB target genes expression levels, c-fos, Egr-1 and exon-III containing BDNF transcripts. Our findings, besides providing a detailed timing of phosphorylation of the major kinases involved in E-LTP in mice, revealed that a modest LTP induction paradigm specifically triggers CREB-mediated gene expression.
    The GABA(B) receptor agonist baclofen enhances the epileptiform activity induced by 4-aminopyridine (4AP) in juvenile rat hippocampal slices. In this study, we used a similar experimental approach (i.e., field potential, intracellular,... more
    The GABA(B) receptor agonist baclofen enhances the epileptiform activity induced by 4-aminopyridine (4AP) in juvenile rat hippocampal slices. In this study, we used a similar experimental approach (i.e., field potential, intracellular, and [K+]o recordings in the CA3 area of slices obtained from 15-23-day-old rats) to establish whether antagonizing GABA(B) receptors could exert opposite (presumably anticonvulsant) effects. Bath application of 4AP (50 microM) induced spontaneous interictal and ictal discharges along with synchronous GABA receptor-mediated potentials. All types of 4AP-induced synchronous activity occurred more frequently during application of the GABA(B) receptor antagonist p3-amino-propyl,p-diethoxymethylphosphonic acid (CGP 35348) (0.1-1 mM; EC50 = 0.25 mM). Moreover, CGP 35348 augmented the frequency and, to a lesser extent, the duration of the asynchronous synaptic activity recorded intracellularly from CA3 pyramids (n = 19). In medium containing 4AP + ionotropic glutamatergic antagonists (which abolished interictal and ictal activity), CGP 35348 prolonged both GABA-receptor-mediated field potentials and the accompanying intracellular long-lasting depolarizations without modifying their rate (n = 12). The transient elevations in [K+]o associated with GABA receptor-mediated potentials in 4AP-containing medium (n = 7 slices) became larger during CGP 35348 application. Similar findings were obtained when CGP 35348 was applied to medium containing 4AP + ionotropic glutamatergic antagonists (n = 6). Thus, the effect of CGP 35348 on 4AP-induced epileptiform activity is not anticonvulsant and to some extent similar to what was reported in this model during GABA(B) receptor activation. We propose that the facilitation of ictal activity by CGP 35348 is mainly caused by the blockade of presynaptic GABA(B) receptor, leading to an increase in GABA release and subsequent larger [K+]o elevations.
    Fast oscillations at approximately 200 Hz, termed ripples, occur in the hippocampus and cortex of several species, including humans, and are thought to play a role in physiological (e.g., sensory information processing or memory... more
    Fast oscillations at approximately 200 Hz, termed ripples, occur in the hippocampus and cortex of several species, including humans, and are thought to play a role in physiological (e.g., sensory information processing or memory consolidation) and pathological (e.g., seizures) processes. Blocking gamma-aminobutyric acid type A (GABA(A)) receptor-mediated inhibition represents one of the most often used models of epileptiform discharge. Here we found that bath application of the GABA(A) receptor antagonist picrotoxin (50 microM) to mouse hippocampus-entorhinal cortex slices induced spontaneous epileptiform activity (duration 536.6 +/- 146.1 msec, mean +/- SD; interval of occurrence 14.8 +/- 3.3 sec, n = 12) with two distinct phases of discharge; the first was characterized, in the dentate gyrus only, by high-frequency, field oscillations (ripples) at 206.3 +/- 23.4 Hz (n = 12), whereas the second component corresponded to afterdischarges in the theta range frequency. Ripples, which were also recorded in "minislices" only of the dentate gyrus, were unaffected by application of the mu-opioid receptor agonist (D-Ala2-N-Me-Phe,Gly-ol)enkephalin (10 microM; n = 6) or the N-methyl-D-aspartate (NMDA) receptor antagonist 3-(2-carboxy-piperazine-4-yl)-propyl-l-phosphonate (10 microM; n = 5). In contrast, the non-NMDA glutamatergic receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (10 microM; n = 5) completely blocked all picrotoxin-induced activities. In addition, application of the GABA(B) receptor agonist baclofen (0.01-0.5 microM; n = 6) dose dependently and reversibly abolished all picrotoxin-induced activities. We also found that application of the gap-junction decouplers carbenoxolone (0.2-0.5 mM; n = 6) or octanol (0.2-0.5 mM; n = 3) blocked the second phase while leaving ripples unchanged. These findings demonstrate that the disinhibited dentate gyrus can generate ripple activity at approximately 200 Hz that is contributed by ionotropic glutamatergic mechanisms and is not dependent on either GABA(A) receptor-mediated or gap-junction mechanisms.
    Several cytokines have short-term effects on synaptic transmission and plasticity that are thought to be mediated by the activation of intracellular protein kinases. We have studied the effects of interleukin-6 (IL-6) on the expression of... more
    Several cytokines have short-term effects on synaptic transmission and plasticity that are thought to be mediated by the activation of intracellular protein kinases. We have studied the effects of interleukin-6 (IL-6) on the expression of paired pulse facilitation (PPF), posttetanic ...
    We established the effects of the antiepileptic drugs (AEDs) carbamazepine (CBZ), topiramate (TPM), and valproic acid (VPA) on the epileptiform activity induced by 4-aminopyridine (4AP) in the rat entorhinal cortex (EC) in an in vitro... more
    We established the effects of the antiepileptic drugs (AEDs) carbamazepine (CBZ), topiramate (TPM), and valproic acid (VPA) on the epileptiform activity induced by 4-aminopyridine (4AP) in the rat entorhinal cortex (EC) in an in vitro brain slice preparation. Brain slices were obtained from Sprague-Dawley rats (200-250 g). Field and intracellular recordings were made from the EC during bath application of 4AP (50 microm). AEDs, and in some experiments, picrotoxin were bath applied concomitantly. Prolonged (>3 s), ictal-like epileptiform events were abolished by CBZ (50 microm), TPM (50 microm), and VPA (1 mm), whereas shorter (<3 s) interictal-like discharges continued to occur, even at concentrations up to 4-fold as high. gamma-Aminobutyric acid (GABA)(A)-receptor antagonism changed the 4AP-induced activity into recurrent interictal-like events that were not affected by CBZ or TPM, even at the highest concentrations. To establish whether these findings reflected the temporal features of the epileptiform discharges, we tested CBZ and TPM on 4AP-induced epileptiform activity driven by stimuli delivered at 100-, 10-, and 5-s intervals; these AEDs reduced ictal-like responses to stimuli at 100-s intervals at nearly therapeutic concentrations, but did not influence shorter interictal-like events elicited by stimuli delivered every 10 or 5 s. We conclude that the AED ability to control epileptiform synchronization in vitro depends mainly on activity-dependent characteristics such as discharge duration. Our data are in keeping with clinical evidence indicating that interictal activity is unaffected by AED levels that are effective to stop seizures.